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Chapter 1

Integration

1.2 Riemann Sums and the Definite Integral
To begin with, our goal is to develop methods for determining the area under a curve.
We know we can approximate the area using rectangles (or other geometric shapes), but we want the exact
area. For this, we will need Riemann sums.

DEFINITION 1.2.1: Partition
A partition, 𝑃 , for the interval [𝑎, 𝑏] is a finite sequence of increasing numbers of the form

𝑎 = 𝑡0 < 𝑡1 < 𝑡2 ⋯ < 𝑡𝑛−1 < 𝑡𝑛 = 𝑏

This partition subdivides the interval [𝑎, 𝑏] into 𝑛 subintervals:

[𝑡0, 𝑡1], … , [𝑡𝑛−1, 𝑡𝑛]

REMARK 1.2.2
These subintervals may not all have the same length.

DEFINITION 1.2.3: Length

Denote the length of the 𝑖th subinterval, [𝑡𝑖−1, 𝑡𝑖], by 𝛥𝑡𝑖; that is, 𝛥𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1.

DEFINITION 1.2.4: Norm
The norm of a partition is the length of the widest subinterval:

‖𝑃 ‖ = max(𝛥𝑡1, … , 𝛥𝑡𝑛)

DEFINITION 1.2.5: Riemann sum
Given a bounded function 𝑓 on [𝑎, 𝑏], a partition 𝑃 of [𝑎, 𝑏], and a set {𝑐1, … , 𝑐𝑛}, where 𝑐𝑖 ∈ [𝑡𝑖−1, 𝑡𝑖],
then a Riemann sum for 𝑓 with respect to 𝑃 is

𝑆 =
𝑛

∑
𝑖=1

𝑓(𝑐𝑖)𝛥𝑡𝑖

3



CHAPTER 1. INTEGRATION 4

Again, we want the exact area, and for that we will need to use infinitely many points!
But we do need to make sure that the norm of our partitions is getting smaller, and that the area we get
doesn’t depend on the choice of Riemann sum.

DEFINITION 1.2.6: Integrable, Integral of 𝑓

We say that 𝑓 is integrable on [𝑎, 𝑏] if there exists a unique number 𝐼 ∈ R such that if whenever {𝑃𝑛}
is a sequence of partitions with lim

𝑛→∞
‖𝑃𝑛‖ = 0 and {𝑆𝑛} is any sequence of Riemann sums associated

to the 𝑃𝑛’s, we have lim
𝑛→∞

𝑆𝑛 = 𝐼 .
In this case, we call 𝐼 the integral of 𝑓 over [𝑎, 𝑏] and denote it by

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

where 𝑎, 𝑏 are the bounds of integration, 𝑓(𝑥) is the integrand, 𝑥 is the variable of integration. The
complete object is called a definite integral.
It represents the exact (signed) area under 𝑓 .

REMARK 1.2.7
The variable of integration is a dummy variable since we can change it into whatever we want, and it
won’t change the value of the integral; that is,

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = ∫

𝑏

𝑎
𝑓(𝑡) 𝑑𝑡 = ∫

𝑏

𝑎
𝑓(⋅) 𝑑⋅

This looks horrible to compute in practice (and it is). The good news is if 𝑓 is continuous, it’s not so bad! (still
bad though)

THEOREM 1.2.8: Integrability Theorem for Continuous Functions

Let 𝑓 be continuous on [𝑎, 𝑏]. Then 𝑓 is integrable on [𝑎, 𝑏].

Proof of 1.2.8
Beyond the scope of this course.

This is fantastic! This means that we can choose any collection of Riemann sums we want when computing
the integral of a continuous function!
Let’s examine a “nice” choice: one where the partition is regular and where we just pick the 𝑐𝑖’s to be the
right-hand endpoints!

DEFINITION 1.2.9: Regular 𝑛-partition

For the interval [𝑎, 𝑏], the regular 𝑛-partition where all 𝑛 subintervals have the same length; that is,

𝛥𝑡 = 𝑏 − 𝑎
𝑛 and 𝑡𝑖 = 𝑡0 + 𝑖𝛥𝑡
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DEFINITION 1.2.10: Regular right-hand Riemann sum

Using this, we define the regular right-hand Riemann sum by taking 𝑐𝑖 = 𝑡𝑖 for all 𝑖:

𝑆𝑛 =
𝑛

∑
𝑖=1

𝑓(𝑡𝑖)𝛥𝑡 =
𝑛

∑
𝑖=1

𝑓(𝑡𝑖) (𝑏 − 𝑎
𝑛 )

REMARK 1.2.11
We can also define the regular left-hand Riemann sum.

Now, we can write a nicer formula for integrating continuous functions!
If 𝑓 is continuous, then

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = lim

𝑛→∞

𝑛
∑
𝑖=1

𝑓(𝑡𝑖) (𝑏 − 𝑎
𝑛 )

EXAMPLE 1.2.12

Evaluate ∫
4

0
𝑥 + 𝑥3 𝑑𝑥.

Solution. Since 𝑓(𝑥) = 𝑥 + 𝑥3 is continuous, we can use the above formula.
In our case: 𝑏 − 𝑎

𝑛 = 4
𝑛 , and 𝑡𝑖 = 0 + 4𝑖

𝑛 = 4𝑖
𝑛 .

So, 𝑓(𝑡𝑖) = 4𝑖
𝑛 + 64𝑖3

𝑛3 . Then, we get:

∫
4

0
𝑥 + 𝑥3 𝑑𝑥 = lim

𝑛→∞

𝑛
∑
𝑖=1

(4𝑖
𝑛 + 64𝑖3

𝑛3 ) ( 4
𝑛) (1.1)

= lim
𝑛→∞

16
𝑛2

𝑛
∑
𝑖=1

𝑖 + 256
𝑛4

𝑛
∑
𝑖=1

𝑖3 (1.2)

= lim
𝑛→∞

16
𝑛2 [𝑛(𝑛 + 1)

2 ] + 256
𝑛4 [𝑛2(𝑛 + 1)2

4 ] (1.3)

= lim
𝑛→∞

8𝑛 + 8
𝑛 + 64 (𝑛2 + 2𝑛 + 1

𝑛2 ) (1.4)

= 8 + 64 (1.5)
= 72 (1.6)

where from 1.2 to 1.3 we used both of the following:
𝑛

∑
𝑖=1

𝑖 = 𝑛(𝑛 + 1)
2 and

𝑛
∑
𝑖=1

𝑖3 = 𝑛2(𝑛 + 1)2

4

REMARK 1.2.13
The theorem also holds for functions that are bounded and have finitely many discontinuities.

1.3 Properties of the Definite Integral
Since a definite integral is the limit of a sequence, many limit laws also hold!
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THEOREM 1.3.1: Properties of Integrals

Assume that 𝑓 and 𝑔 are integrable on the interval [𝑎, 𝑏]. Then:

(1) For any 𝑐 ∈ R, ∫
𝑏

𝑎
𝑐𝑓(𝑥) 𝑑𝑥 = 𝑐 ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

(2) ∫
𝑏

𝑎
(𝑓 + 𝑔)(𝑥) 𝑑𝑥 = ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 + ∫

𝑏

𝑎
𝑔(𝑥) 𝑑𝑥.

(3) If 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏], then 𝑚(𝑏 − 𝑎) ≤ ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≤ 𝑀(𝑏 − 𝑎).

(4) If 0 ≤ 𝑓(𝑥) for all 𝑥 ∈ [𝑎, 𝑏], then 0 ≤ ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

(5) If 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏], then ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≤ ∫

𝑏

𝑎
𝑔(𝑥) 𝑑𝑥.

(6) The function |𝑓| is integrable on [𝑎, 𝑏] and ∣∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥∣ ≤ ∫

𝑏

𝑎
|𝑓(𝑥)| 𝑑𝑥.

Proof of 1.3.1
• (1) and (2) follow from limit laws for sequences.
• (3) implies (4).
• (1), (2), and (4) imply (5).
• (6) follows from the triangle inequality.

We will now prove (3).
Suppose 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 and partition the interval 𝑎 = 𝑡0 < ⋯ < 𝑡𝑛 = 𝑏.
Note that

𝑛
∑
𝑖=1

𝛥𝑡 = 𝑏 − 𝑎
𝑛 (𝑛) = 𝑏 − 𝑎 Then, since 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 , we get

𝑚(𝑏 − 𝑎) =
𝑛

∑
𝑖=1

𝑚𝛥𝑡 ≤
𝑛

∑
𝑖=1

𝑓(𝑡𝑖)𝛥𝑡 ≤
𝑛

∑
𝑖=1

𝑀𝛥𝑡 = 𝑀(𝑏 − 𝑎)

So, taking limits gives
𝑚(𝑏 − 𝑎) ≤ ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≤ 𝑀(𝑏 − 𝑎)

DEFINITION 1.3.2: More properties

(I) If 𝑓(𝑎) is defined, then ∫
𝑎

𝑎
𝑓(𝑥) 𝑑𝑥 = 0

(II) If 𝑓 is integrable on [𝑎, 𝑏], then ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = − ∫

𝑎

𝑏
𝑓(𝑥) 𝑑𝑥

THEOREM 1.3.3
If 𝑓 is integrable on an interval 𝐼 containing 𝑎, 𝑏, and 𝑐, then

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = ∫

𝑐

𝑎
𝑓(𝑥) 𝑑𝑥 + ∫

𝑏

𝑐
𝑓(𝑥) 𝑑𝑥
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Proof of 1.3.3
Beyond the scope of this course.

REMARK 1.3.4
𝑐 does not need to be between 𝑎 and 𝑏!

Geometric Interpretation of the Integral
So far, we have only examined positive functions, but we should note that ∫𝑏

𝑎 𝑓(𝑥) 𝑑𝑥 returns the signed area
between 𝑓 and the 𝑥-axis. That is, if 𝑓(𝑥) ≤ 0, then ∫𝑏

𝑎 𝑓(𝑥) 𝑑𝑥 ≤ 0 too.

So, in general, ∫𝑏
𝑎 𝑓(𝑥) 𝑑𝑥 is the area under 𝑓 that lies above the 𝑥-axis minus the area above the graph of 𝑓

that lies below the 𝑥-axis.
EXAMPLE 1.3.5

∫
1

−1
𝑥 𝑑𝑥 = 𝑅2 − 𝑅1

but 𝑅2 = 𝑅2, so
∫

1

−1
𝑥 𝑑𝑥 = 0

1−1 𝑅1

𝑅2

REMARK 1.3.6
If we are lucky, we can use geometric formulas to evaluate integrals (see pg 26–28 in the notes). How-
ever, we are almost never this lucky…

1.4 Average Value of a Function
DEFINITION 1.4.1: Average value

If 𝑓 is continuous on [𝑎, 𝑏], the average value of 𝑓 on [𝑎, 𝑏] is defined as 1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.
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Geometric Interpretation
Proof of 1.4.2
If 𝑓 is continuous on [𝑎, 𝑏], EVT says there exists 𝑚, 𝑀 ∈ R such that 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 for 𝑥 ∈ [𝑎, 𝑏], and
𝑓(𝑐1) = 𝑚, 𝑓(𝑐2) = 𝑀 for some 𝑐1, 𝑐2 ∈ [𝑎, 𝑏].
Also, we know

𝑚(𝑏 − 𝑎) ≤ ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≤ 𝑀(𝑏 − 𝑎) ⟹ 𝑚 ≤ 1

𝑏 − 𝑎 ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≤ 𝑀

⟺ 𝑓(𝑐1) ≤ 1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≤ 𝑓(𝑐2)

IVT says there exists 𝑐 between 𝑐1 and 𝑐2, so that

𝑓(𝑐) = 1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

THEOREM 1.4.2: Average Value Theorem (AVT)

Assume 𝑓 is continuous on [𝑎, 𝑏]. There exists 𝑐 ∈ [𝑎, 𝑏] such that 𝑓(𝑐) = 1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝑓(𝑥)𝑑𝑥.

REMARK 1.4.3
Note that this theorem holds even if 𝑏 < 𝑎 since

𝑓(𝑐) = 1
𝑎 − 𝑏 ∫

𝑎

𝑏
𝑓(𝑥)𝑑𝑥

= 1
𝑎 − 𝑏(− ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥)

= 1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

The big problem we face now is that evaluating ∫𝑏
𝑎 𝑓(𝑥) 𝑑𝑥 is monstrously difficult for all but the simplest of

functions.
IF ONLY THERE WAS A BETTER WAY!
(spoilers: there’s a better way! It’s the Fundamental Theorem of Calculus!)

1.5 The Fundamental Theorem of Calculus (Part 1)
The FTC is, essentially, a simple derivative rule. But its consequences are very valuable. The reason is that it
provides the link between integral calculus and differential calculus!
We start with integral functions: let 𝑓 be continuous on [𝑎, 𝑏].

Define 𝐺(𝑥) = ∫
𝑥

𝑎
𝑓(𝑡) 𝑑𝑡 for 𝑥 ∈ [𝑎, 𝑏].

What is 𝐺(𝑥)? It’s the function that returns the signed area under 𝑓 from 𝑎 to 𝑥.
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EXAMPLE 1.5.1
Compute the area of 𝑓(𝑥) = 𝑥 on [0, 5].
Solution.

𝐺(𝑥) = ∫
𝑥

0
𝑡 𝑑𝑡 = 1

2(base)(height) = 1
2(𝑥)(𝑥) = 𝑥2

2
Wait a minute! 𝐺′(𝑥) = 𝑥 = 𝑓(𝑥). Is this always true?!

THEOREM 1.5.2: Fundamental Theorem of Calculus I (FTC I)

If 𝑓 is continuous on an open interval 𝐼 containing 𝑥 = 𝑎, and if

𝐺(𝑥) = ∫
𝑥

𝑎
𝑓(𝑡) 𝑑𝑡

Then 𝐺 is differentiable for all 𝑥 ∈ 𝐼 and 𝐺′(𝑥) = 𝑓(𝑥); that is, 𝑑
𝑑𝑥 ∫

𝑥

𝑎
𝑓(𝑡) 𝑑𝑡 = 𝑓(𝑥).

Proof of 1.5.2

Let 𝑓 be continuous on 𝐼 , 𝐺(𝑥) = ∫
𝑥

𝑎
𝑓(𝑡) 𝑑𝑡, and fix 𝑥0 ∈ 𝐼 .

Let 𝜀 > 0 be given. Since 𝑓 is continuous at 𝑥0, there exists a 𝛿 > 0 such that if 0 < |𝑐 − 𝑥0| < 𝛿, then

|𝑓(𝑐) − 𝑓(𝑥0)| < 𝜀

Let 0 < |𝑥 − 𝑥0| < 𝛿. Then,

𝐺(𝑥) − 𝐺(𝑥0)
𝑥 − 𝑥0

=
∫

𝑥

𝑎
𝑓(𝑡) 𝑑𝑡 − ∫

𝑥0

𝑎
𝑓(𝑡) 𝑑𝑡

𝑥 − 𝑥0

=
∫

𝑥0

𝑎
𝑓(𝑡) 𝑑𝑡 + ∫

𝑥

𝑥0

𝑓(𝑡) 𝑑𝑡 − ∫
𝑥0

𝑎
𝑓(𝑡) 𝑑𝑡

𝑥 − 𝑥0

= 1
𝑥 − 𝑥0

∫
𝑥

𝑥0

𝑓(𝑡) 𝑑𝑡

The AVT says there exists 𝑐 between 𝑥 and 𝑥0 such that

𝑓(𝑐) = 1
𝑥 − 𝑥0

∫
𝑥

𝑥0

𝑓(𝑡) 𝑑𝑡

Since 0 < |𝑥 − 𝑥0| < 𝛿, we get 0 < |𝑐 − 𝑥0| < 𝛿 too, so

∣𝐺(𝑥) − 𝐺(𝑥0)
𝑥 − 𝑥0

− 𝑓(𝑥0)∣ = |𝑓(𝑐) − 𝑓(𝑥0)| < 𝜀

This says 𝐺′(𝑥0) = lim
𝑥→𝑥0

𝐺(𝑥) − 𝐺(𝑥0)
𝑥 − 𝑥0

= 𝑓(𝑥0).
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EXAMPLE 1.5.3

Compute 𝑑
𝑑𝑥 ∫

𝑥

5
sin(𝑡2) 𝑑𝑡

Solution. 𝑑
𝑑𝑥 ∫

𝑥

5
sin(𝑡2) 𝑑𝑡 = sin(𝑥2) since 𝑓(𝑡) = sin(𝑡2) is continuous, by FTC I.

EXAMPLE 1.5.4

Compute 𝑑
𝑑𝑥 ∫

𝑥2

5
sin(𝑡2) 𝑑𝑡.

Solution. Let 𝐺(𝑥) = ∫
𝑥

5
sin(𝑡2) 𝑑𝑡, then 𝐺(𝑥2) = ∫

𝑥2

5
sin(𝑡2) 𝑑𝑡. So,

𝑑
𝑑𝑥 ∫

𝑥2

5
sin(𝑡2) 𝑑𝑡 = 𝑑

𝑑𝑥 [𝐺(𝑥2)] = 𝐺′(𝑥2)(2𝑥) = 𝑓(𝑥2)(2𝑥) = sin(𝑥4)(2𝑥)

We will see a more general formula next week!

1.6 The Fundamental Theorem of Calculus (Part 2)
It seems like integrating is the opposite operation to differentiation, and it is! We can use antiderivatives to
evaluate integrals, as we will see. But first, let’s quickly recap what we know about antidifferentiation.

DEFINITION 1.6.1: Antiderivative
Given a function 𝑓 , an antiderivative of 𝑓 is a function 𝐹 such that 𝐹 ′(𝑥) = 𝑓(𝑥).

REMARK 1.6.2
Antiderivatives are not unique! For example, let 𝑓(𝑥) = 2𝑥, some antiderivatives of 𝑓(𝑥) include:

• 𝐹1(𝑥) = 𝑥2

• 𝐹2(𝑥) = 𝑥2 + 4
• 𝐹3(𝑥) = 𝑥2 − 𝜋

DEFINITION 1.6.3: Indefinite integral

The collection of all antiderivatives of 𝑓(𝑥) is denoted by ∫ 𝑓(𝑥) 𝑑𝑥 and

∫ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) + 𝐶

where 𝐶 ∈ R and 𝐹 is any antiderivative. This is called the indefinite integral.

REMARK 1.6.4
By the Antiderivative Theorem, we know any two antiderivatives of 𝑓 differ by a constant.

Here are a bunch of antiderivatives:

• ∫ 𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1

𝑛 + 1 + 𝐶 if 𝑛 ≠ −1
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• ∫ 1
𝑥 𝑑𝑥 = ln|𝑥| + 𝐶

• ∫ 𝑒𝑥 𝑑𝑥 = 𝑒𝑥 + 𝐶

• ∫ sin(𝑥) 𝑑𝑥 = − cos(𝑥) + 𝐶

• ∫ cos(𝑥) 𝑑𝑥 = sin(𝑥) + 𝐶

• ∫ sec2(𝑥) 𝑑𝑥 = tan(𝑥) + 𝐶

• ∫ 1
1 + 𝑥2 𝑑𝑥 = arctan(𝑥) + 𝐶

• ∫ 1√
1 − 𝑥2 𝑑𝑥 = arcsin(𝑥) + 𝐶

• ∫ − 1√
1 − 𝑥2 𝑑𝑥 = arccos(𝑥) + 𝐶

• ∫ sec(𝑥) tan(𝑥) 𝑑𝑥 = sec(𝑥) + 𝐶

• ∫ 𝑎𝑥 𝑑𝑥 = 𝑎𝑥

ln(𝑎) + 𝐶 for 𝑎 > 0

By 1.5.2, we know every continuous function has an antiderivative, but how can we use them to actually
evaluate definite integrals? Well…

THEOREM 1.6.5: Fundamental Theorem of Calculus II (FTC II)

If 𝑓 is continuous on [𝑎, 𝑏] and 𝐹 is any antiderivative of 𝑓 , then

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) = [𝐹(𝑥)]𝑏

𝑎

Proof of 1.6.5

Let 𝐹 be any antiderivative of 𝑓 and define 𝐺(𝑥) = ∫
𝑥

𝑎
𝑓(𝑡) 𝑑𝑡.

By 1.5.2, we know 𝐺′(𝑥) = 𝑓(𝑥) as well, so by the Antiderivative Theorem, 𝐺(𝑥) = 𝐹(𝑥) + 𝐶 for some
𝐶 ∈ R.
But then,

𝐺(𝑏) − 𝐺(𝑎) = [𝐹(𝑏) + 𝐶] − [𝐹(𝑎) + 𝐶] = 𝐹(𝑏) − 𝐹(𝑎)
Also,

∫
𝑏

𝑎
𝑓(𝑡) 𝑑𝑡 = 𝐺(𝑏)

= 𝐺(𝑏) − 𝐺(𝑎) since 𝐺(𝑎) = 0
= 𝐹(𝑏) − 𝐹(𝑎)

Now, we can evaluate definite integrals without Riemann sums!
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EXAMPLE 1.6.6

(i) Compute ∫
3

1
𝑥2 + 𝑥 𝑑𝑥.

Solution.

∫
3

1
𝑥2 + 𝑥 𝑑𝑥 = [𝑥3

3 + 𝑥2

2 ]
3

1
= (33

3 + 32

2 ) − (1
3 + 1

2) = 27
2 − 5

6 = 38
3

(ii) Compute ∫
2𝜋

0
sin(𝑥) 𝑑𝑥.

Solution.
∫

2𝜋

0
sin(𝑥) 𝑑𝑥 = [− cos(𝑥)]2𝜋

0 = − cos(2𝜋) + cos(0) = 1 + 1 = 0

This makes sense since the signed area is zero.
(iii) Compute ∫

8

2

𝑥2 + 2𝑥 + 1
𝑥 𝑑𝑥.

Solution.

∫
8

2

𝑥2 + 2𝑥 + 1
𝑥 𝑑𝑥 = ∫

8

2
𝑥 + 2 + 1

𝑥 𝑑𝑥

= [𝑥2

2 + 2𝑥 + ln|𝑥|]
8

2
= [32 + 16 + ln(8)] − [2 + 4 + ln(2)]
= 42 + ln(8) − ln(2)
= 42 + ln(4)

This is fantastic! We are only limited by our ability to find antiderivatives! As we will see, finding antideriva-
tives is hard in general, but in the next couple of weeks we will learn a few techniques.
But first, let’s look at the extended version of FTC I:

COROLLARY 1.6.7: Extended Version of the Fundamental Theorem of Calculus
If 𝑓 is continuous, and 𝑔, ℎ are both differentiable, then

𝑑
𝑑𝑥[ ∫

ℎ(𝑥)

𝑔(𝑥)
𝑓(𝑡) 𝑑𝑡]= 𝑓(ℎ(𝑥))ℎ′(𝑥) − 𝑓(𝑔(𝑥))𝑔′(𝑥)

(also called the Leibniz Formula).

Proof of 1.6.7
Let 𝐹 be an antiderivative of 𝑓 , then by FTC II:

∫
ℎ(𝑥)

𝑔(𝑥)
𝑓(𝑡) 𝑑𝑡 = 𝐹(ℎ(𝑥)) − 𝐹(𝑔(𝑥))
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for each 𝑥. So,

𝑑
𝑑𝑥[ ∫

ℎ(𝑥)

𝑔(𝑥)
𝑓(𝑡) 𝑑𝑡] = 𝑑

𝑑𝑥[𝐹(ℎ(𝑥)) − 𝐹(𝑔(𝑥))]

= 𝐹 ′(ℎ(𝑥))ℎ′(𝑥) − 𝐹 ′(𝑔(𝑥))𝑔′(𝑥)
= 𝑓(ℎ(𝑥))ℎ′(𝑥) − 𝑓(𝑔(𝑥))𝑔′(𝑥)

EXAMPLE 1.6.8

Compute 𝑑
𝑑𝑥 ∫

ln(𝑥)

5𝑥
cos(𝑡2 − 3𝑡) 𝑑𝑡.

Solution.

𝑑
𝑑𝑥 ∫

ln(𝑥)

5𝑥
cos(𝑡2 − 3𝑡) 𝑑𝑡 = cos[ln(𝑥)2 − 3 ln(𝑥)] ( 1

𝑥) − cos(25𝑥2 − 15𝑥)(5)

1.7 Change of Variables
The first integration technique we will examine is the reverse chain rule: Change of Variable, also called
Substitution.

The rule is: ∫ 𝑓(𝑔(𝑥))𝑔′(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑢) 𝑑𝑢; that is, we “substitute” 𝑢 = 𝑔(𝑥).

Proof of Change of Variable (Sketch)

Let 𝑓 and 𝑔 be functions and let ℎ be an antiderivative of 𝑓 , so ℎ′(𝑥) = 𝑓(𝑥).
Let 𝐻(𝑥) = ℎ(𝑔(𝑥)), so

𝐻′(𝑥) = ℎ′(𝑔(𝑥))𝑔′(𝑥) = 𝑓(𝑔(𝑥))𝑔′(𝑥)
so ℎ(𝑔(𝑥)) is an antiderivative of 𝑓(𝑔(𝑥))𝑔′(𝑥).
Therefore,

∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 = ℎ(𝑔(𝑥)) + 𝐶 for some 𝑐 ∈ R

= ℎ(𝑢) + 𝐶 where 𝑢 = 𝑔(𝑥)

= ∫ 𝑓(𝑢) 𝑑𝑢 where 𝑢 = 𝑔(𝑥)

So, if 𝑢 = 𝑔(𝑥), then 𝑑𝑢 = 𝑔′(𝑥) 𝑑𝑥.

General strategy: let 𝑢 = …, 𝑑𝑢 = … 𝑑𝑥, then solve for 𝑑𝑥, substitute in 𝑢 and 𝑑𝑥, try to transform the integral
into one in terms of only 𝑢.
Good choices for 𝑢:

• 𝑢 = a function whose derivative is present.
• 𝑢 = base of an ugly power
• 𝑢 = function inside another function; that is, inside sin / cos / ln, or in the exponent of 𝑒.



CHAPTER 1. INTEGRATION 14

EXAMPLE 1.7.1

(i) Compute ∫ ln(𝑥)
𝑥 𝑑𝑥.

Solution.

∫ ln(𝑥)
𝑥 𝑑𝑥 = ∫ 𝑢

𝑥(𝑥) 𝑑𝑢 𝑢 = ln(𝑥) ⟺ 𝑑𝑢 = 1
𝑥 𝑑𝑥

= ∫ 𝑢 𝑑𝑢

= 𝑢2

2 + 𝐶

= [ln(𝑥)]2
2 + 𝐶

(ii) Compute ∫ cos(√𝑥)√𝑥 𝑑𝑥.
Solution.

∫ cos(√𝑥)√𝑥 𝑑𝑥 = ∫ cos(𝑢)
𝑢 (2𝑢) 𝑑𝑢 𝑢 = √𝑥 ⟺ 𝑑𝑢 = 1

2√𝑥 𝑑𝑥

= 2 ∫ cos(𝑢) 𝑑𝑢

= 2 sin(𝑢) + 𝐶
= 2 sin(√𝑥) + 𝐶

(iii) Compute ∫ 𝑥2
√𝑥 + 1 𝑑𝑥. Don’t forget to eliminate all the 𝑥’s!

Solution.

∫ 𝑥2
√𝑥 + 1 𝑑𝑥 = ∫ (𝑢 − 1)2

√𝑢 𝑑𝑢 𝑢 = 𝑥 + 1 ⟺ 𝑑𝑢 = 𝑑𝑥

= ∫ 𝑢2 − 2𝑢 + 1√𝑢 𝑑𝑢

= ∫ 𝑢3/2 − 2𝑢1/2 + 𝑢−1/2 𝑑𝑢

= 2
5𝑢5/2 − 4

3𝑢3/2 + 2𝑢1/2 + 𝐶

= 2
5(𝑥 + 1)5/2 − 4

3(𝑥 + 1)3/2 + 2(𝑥 + 1)1/2 + 𝐶

(iv) Compute ∫ sin6(𝑥) cos(𝑥) 𝑑𝑥.
Solution.

∫ sin6(𝑥) cos(𝑥) 𝑑𝑥 = ∫ 𝑢6 𝑑𝑢 𝑢 = sin(𝑥) ⟺ 𝑑𝑢 = cos(𝑥) 𝑑𝑥

= 𝑢7

7 + 𝐶

= sin7(𝑥)
7 + 𝐶

(v) Compute ∫ 𝑥𝑒5𝑥2 𝑑𝑥.
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Solution.

∫ 𝑥𝑒5𝑥2 𝑑𝑥 = ∫ 𝑥𝑒𝑢

10𝑥 𝑑𝑢 𝑢 = 5𝑥2 ⟺ 𝑑𝑢 = 10𝑥 𝑑𝑥

= 1
10 ∫ 𝑒𝑢 𝑑𝑢

= 𝑒𝑢

10 + 𝐶

= 𝑒5𝑥2

10 + 𝐶

Substitution and Definite Integrals
Q: What should we do with the limits of integration when making a substitution?
A: We should change them as well!

THEOREM 1.7.2: Change of Variable

If 𝑔′(𝑥) is continuous on [𝑎, 𝑏] and 𝑓(𝑥) is continuous between 𝑔(𝑎) and 𝑔(𝑏), then

∫
𝑥=𝑏

𝑥=𝑎
𝑓(𝑔(𝑥))𝑔′(𝑥) 𝑑𝑥 = ∫

𝑢=𝑔(𝑏)

𝑢=𝑔(𝑎)
𝑓(𝑢) 𝑑𝑢

Proof of 1.7.2
Let ℎ(𝑢) be an antiderivative of 𝑓(𝑢). Then ℎ(𝑔(𝑥)) is an antiderivative of 𝑓(𝑔(𝑥))𝑔′(𝑥).

By FTC II, ∫
𝑏

𝑎
𝑓(𝑔(𝑥))𝑔′(𝑥) 𝑑𝑥 = ℎ(𝑔(𝑏)) − ℎ(𝑔(𝑎)).

But also, ∫
𝑔(𝑏)

𝑔(𝑎)
𝑓(𝑢) 𝑑𝑢 = ℎ(𝑔(𝑏)) − ℎ(𝑔(𝑎)), so we get ∫

𝑏

𝑎
𝑓(𝑔(𝑥))𝑔′(𝑥) 𝑑𝑥 = ∫

𝑔(𝑏)

𝑔(𝑎)
𝑓(𝑢) 𝑑𝑢.

EXAMPLE 1.7.3

(i) Compute ∫
1

0
𝑒𝑥 cos(𝑒𝑥) 𝑑𝑥.

Solution.

∫
1

0
𝑒𝑥 cos(𝑒𝑥) 𝑑𝑥 = ∫

𝑒

1

𝑢 cos(𝑢)
𝑢 𝑑𝑢 𝑢 = 𝑒𝑥 ⟺ 𝑑𝑢 = 𝑒𝑥 𝑑𝑥

= ∫
𝑒

1
cos(𝑢) 𝑑𝑢

= [sin(𝑢)]𝑒
1

= sin(𝑒) − sin(1)

(ii) Compute ∫
1

0

𝑥3

1 + 𝑥4 𝑑𝑥.
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Solution.

∫
1

0

𝑥3

1 + 𝑥4 𝑑𝑥 = ∫
2

1

𝑥3

𝑢 ⋅ 4𝑥3 𝑑𝑢 𝑢 = 1 + 𝑥4 ⟺ 𝑑𝑢 = 4𝑥3 𝑑𝑥

= 1
4 ∫

2

1

1
𝑢 𝑑𝑢

= [ ln|𝑢|
4 ]

2

1

= ln(2)
4 − ln(1)

4
= ln(2)

4

REMARK 1.7.4
You can also leave the limits of integration in terms of 𝑥 as long as you make it clear and don’t forget
to switch back to 𝑥 at the end before plugging numbers in!

EXAMPLE 1.7.5: Tricky Change of Variable

∫ sec(𝑥) 𝑑𝑥 = ∫ sec(𝑥) sec(𝑥) + tan(𝑥)
sec(𝑥) + tan(𝑥) 𝑑𝑥

= ∫ sec2(𝑥) + sec(𝑥) tan(𝑥)
sec(𝑥) + tan(𝑥) 𝑑𝑥

= ∫ 1
𝑢 𝑑𝑢

= ln|𝑢| + 𝐶
= ln|sec(𝑥) + tan(𝑥)| + 𝐶

We made the substitution 𝑢 = sec(𝑥) + tan(𝑥) ⟺ 𝑑𝑢 = sec(𝑥) tan(𝑥) + sec2(𝑥) 𝑑𝑥.

REMARK 1.7.6
The trick used in 1.7.5 only works for sec(𝑥) and csc(𝑥), so it’s not useful to memorize.

EXERCISE 1.7.7

Compute: ∫ tan(𝑥) 𝑑𝑥, ∫ cot(𝑥) 𝑑𝑥.
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Techniques of Integration

2.1 Trigonometric Substitution
Sometimes, changing 𝑥 into a trigonometric function can simplify an integral!
There are three situations where this is useful: say 𝛼 ∈ R.

If you see: Try substituting: Range for 𝜃
√

𝑎2 − 𝑥2 𝑥 = 𝑎 sin(𝜃) 𝜃 ∈ (−𝜋/2, 𝜋/2)√
𝑎2 + 𝑥2 𝑥 = 𝑎 tan(𝜃) 𝜃 ∈ (−𝜋/2, 𝜋/2)√
𝑥2 − 𝑎2 𝑥 = 𝑎 sec(𝜃) 𝜃 ∈ [0, 𝜋/2] ∪ [𝜋, 3𝜋/2]

REMARK 2.1.1
• The range for 𝜃 is important to ensure that sin(𝜃)/ tan(𝜃)/ sec(𝜃) are invertible (so we can solve

for 𝜃 in terms of 𝑥, if need be).
• No, you don’t need to state the range for 𝜃 each time.
• The integrand may need to be simplified before a trigonometric substitution can be made.
• Don’t forget to change back to 𝑥 in an indefinite integral.

EXAMPLE 2.1.2

Compute ∫ 1√
𝑥2 + 4

𝑑𝑥.

17
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Solution.

∫ 1√
𝑥2 + 4

𝑑𝑥 = ∫ 1
√4 tan2(𝜃) + 4

(2 sec2(𝜃)) 𝑑𝜃 𝑥 = 2 tan(𝜃) ⟺ 𝑑𝑥 = 2 sec2(𝜃) 𝑑𝜃

= ∫ sec2(𝜃)
√tan2(𝜃) + 1

𝑑𝜃

= ∫ sec2(𝜃)
√sec2(𝜃)

𝑑𝜃

= ∫ sec2(𝜃)
|sec(𝜃)| 𝑑𝜃

= ∫ sec(𝜃) 𝑑𝜃 since sec(𝜃) > 0

= ln|sec 𝜃 + tan(𝜃)| + 𝐶

= ln∣
√

𝑥2 + 4
2 + 𝑥

2 ∣ + 𝐶

where we substituted 𝑥 = 2 tan(𝜃) ⟺ tan(𝜃) = 𝑥
2 ⟹ sec(𝜃) =

√
𝑥2 + 4

2 in the last step (try to
visualize a triangle).

REMARK 2.1.3
When using a trigonometric substitution, the absolute values will always go away due to the choice of
𝜃’s!

EXAMPLE 2.1.4

(i) Compute ∫
√

9 − 4𝑥2

𝑥2 𝑑𝑥.
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Solution.

∫
√

9 − 4𝑥2

𝑥2 𝑑𝑥 = 2 ∫ √9/4 − 𝑥2

𝑥2 𝑑𝑥

= 2 ∫
√9/4 − 9/4 sin2(𝜃) (3/2 cos(𝜃))

9/4 sin2(𝜃)
𝑑𝜃 𝑥 = 3/2 sin(𝜃) ⟺ 𝑑𝑥 = 3/2 cos(𝜃) 𝑑𝜃

= 23
2 ⋅ 3

2 ⋅ 4
9 ∫

√1 − sin2(𝜃) cos(𝜃)
sin2(𝜃)

𝑑𝜃

= 2 ∫ |cos(𝜃)| cos(𝜃)
sin2(𝜃)

𝑑𝜃

= 2 ∫ cos2(𝜃)
sin2(𝜃)

𝑑𝜃 since cos(𝜃) > 0

= 2 ∫ cot2(𝜃) 𝑑𝜃

= 2 ∫ csc2(𝜃) − 1 𝑑𝜃
= 2[− cot(𝜃) − 𝜃] + 𝐶

= 2 [−
√

9 − 4𝑥2

2𝑥 − arcsin(2𝑥
3 )] + 𝐶

Where we substituted 𝑥 = 3
2 sin(𝜃) ⟺ 2𝑥

3 = sin(𝜃) ⟹ 𝜃 = arcsin(2𝑥
3 ) and cot(𝜃) =

√
9 − 4𝑥2

2𝑥 in the last step.

(ii) Compute ∫ 1
𝑥2

√
𝑥2 − 4

𝑑𝑥.
Solution.

∫ 1
𝑥2

√
𝑥2 − 4

𝑑𝑥 = ∫ 2 sec(𝜃) tan(𝜃)
4 sec2(𝜃)√4 sec2(𝜃) − 4

𝑑𝜃 𝑥 = 2 sec(𝜃) ⟺ 𝑑𝑥 = 2 sec(𝜃) tan(𝜃) 𝑑𝜃

= 1
4 ∫ tan(𝜃)

sec(𝜃)√sec2(𝜃) − 1
𝑑𝜃

= 1
4 ∫ tan(𝜃)

sec(𝜃) tan(𝜃) 𝑑𝜃

= 1
4 ∫ tan(𝜃)

sec(𝜃) + tan(𝜃) 𝑑𝜃

= 1
4 ∫ 1

sec(𝜃) 𝑑𝜃

= 1
4 ∫ cos(𝜃) 𝑑𝜃

= sin(𝜃)
4 + 𝐶

=
√

𝑥2 − 4
4𝑥 + 𝐶

Where we substituted 𝑥 = 2 sec(𝜃) ⟹ sin(𝜃) =
√

𝑥2 − 4
𝑥 in the last step.
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(iii) Compute ∫ 𝑥
√

𝑥2 − 9 𝑑𝑥.
Solution.

∫ 𝑥
√

𝑥2 − 9 𝑑𝑥 = ∫ 𝑥√𝑢
2𝑥 𝑑𝑢 𝑢 = 𝑥2 − 9 ⟺ 𝑑𝑢 = 2𝑥 𝑑𝑥

= 1
2 ∫ √𝑢 𝑑𝑢

= 1
2 (2

3) 𝑢3/2 + 𝐶

= 1
3 (𝑥2 − 9)

3/2 + 𝐶

(iv) Compute ∫
3

0

𝑥
(1 + 𝑥2)2 𝑑𝑥.

Solution.

∫
√

3

0

𝑥
(1 + 𝑥2)2 𝑑𝑥 = ∫

𝜋/3

0

tan(𝜃) sec2(𝜃)
[1 + tan2(𝜃)]2 𝑑𝜃 𝑥 = tan(𝜃) ⟺ 𝑑𝑥 = sec2(𝜃) 𝑑𝜃

= ∫
𝜋/3

0

tan(𝜃) sec2(𝜃)
sec4(𝜃) 𝑑𝜃

= ∫
𝜋/3

0

tan(𝜃)
sec2(𝜃) 𝑑𝜃

= ∫
𝜋/3

0

sin(𝜃)
cos(𝜃) (cos2(𝜃)) 𝑑𝜃

= ∫
𝜋/3

0
sin(𝜃) cos(𝜃) 𝑑𝜃 𝑢 = sin(𝜃) ⟺ 𝑑𝑢 = cos(𝜃) 𝑑𝜃

= ∫
√

3/2

0
𝑢 𝑑𝑢

= [𝑢2

2 ]
√

3/2

0

= 3
4

REMARK 2.1.5
You may need to complete the square before making a trigonometric substitution.

EXERCISE 2.1.6
Show that 3 − 2𝑥 − 𝑥2 = 4 − (𝑥 + 1)2 by completing the square.

EXAMPLE 2.1.7

Compute ∫ 𝑥
(3 − 2𝑥 − 𝑥2)3/2

𝑑𝑥.
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Solution. Substitution: 𝑥 + 1 = 2 sin(𝜃) ⟺ 𝑑𝑥 = 2 cos(𝜃) 𝑑𝜃.

∫ 𝑥
(3 − 2𝑥 − 𝑥2)3/2

𝑑𝑥 = ∫ 𝑥
[4 − (𝑥 + 1)2]3/2

𝑑𝑥

= ∫ [2 sin(𝜃) − 1](2 cos(𝜃))
[4 − 4 sin2(𝜃)]

3/2
𝑑𝜃

= 1
4 ∫ [2 sin(𝜃) − 1] (cos(𝜃))

[cos2(𝜃)]3/2
𝑑𝜃

= 1
4 ∫ 2 sin(𝜃) − 1

cos2(𝜃) 𝑑𝜃

= 1
4 ∫ 2 sin(𝜃)

cos2(𝜃) − 1
cos2(𝜃) 𝑑𝜃

= 1
4 ∫ 2 tan(𝜃) sec(𝜃) − sec2(𝜃) 𝑑𝜃

= 1
4 [2 sec(𝜃) − tan(𝜃)] + 𝐶

= 1
4 [ 4

√4 − (𝑥 + 1)2 − (𝑥 + 1)
√4 − (𝑥 + 1)2 ] + 𝐶

Where we substituted 𝑥 + 1 = 2 sin(𝜃) ⟺ sin(𝜃) = 𝑥 + 1
2 ⟹ sec(𝜃) = 2

√4 − (𝑥 + 1)2 and

tan(𝜃) = 𝑥 + 1
√4 − (𝑥 + 1)2 in the last step.

2.2 Integration by Parts
Let 𝑢 and 𝑣 be functions of 𝑥. From the product rule, we know

𝑑
𝑑𝑥[𝑢𝑣] = 𝑢 𝑑𝑣

𝑑𝑥 + 𝑣𝑑𝑢
𝑑𝑥

Integrating both sides gives:
∫ 𝑑

𝑑𝑥[𝑢𝑣] 𝑑𝑥 = ∫ 𝑢 𝑑𝑣
𝑑𝑥 𝑑𝑥 + ∫ 𝑣𝑑𝑢

𝑑𝑥 𝑑𝑥

Omit 𝑑𝑥’s to make
𝑢𝑣 = ∫ 𝑢 𝑑𝑣 − ∫ 𝑣 𝑑𝑢

So, we get:

∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢

Strategy: When integrating the product of two functions, pick one to integrate (call it 𝑑𝑣), and one to differ-
entiate (call it 𝑢).

• Pick 𝑑𝑣 to be the most difficult function you know how to integrate.
• Pick 𝑢 so that it gets simpler when differentiated.

Or, use ILATE: Pick 𝑢 = the first function in the list:
• I: Inverse trigonometric functions
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• L: Logarithmic functions
• A: Algebraic functions (powers of 𝑥)
• T: Trigonometric functions
• E: Exponential functions
EXAMPLE 2.2.1

(i) Compute ∫ 𝑥2 ln(𝑥) 𝑑𝑥.

Solution. Let 𝑢 = ln(𝑥) and 𝑑𝑣 = 𝑥2 𝑑𝑥, so we have 𝑑𝑢 = 1
𝑥 𝑑𝑥 and 𝑣 = 𝑥3

3 .

∫ 𝑥2 ln(𝑥) 𝑑𝑥 = 𝑥3

3 ln(𝑥) − ∫ 𝑥3

3 ( 1
𝑥) 𝑑𝑥

= 𝑥3

3 ln(𝑥) − ∫ 𝑥2

3 𝑑𝑥

= 𝑥3

3 ln(𝑥) − 𝑥3

9 + 𝐶

(ii) Compute ∫ 𝑥𝑒𝑥 𝑑𝑥.
Solution. Let 𝑢 = 𝑥 and 𝑑𝑣 = 𝑒𝑥 𝑑𝑥, so we have 𝑑𝑢 = 𝑑𝑥 and 𝑣 = 𝑒𝑥.

∫ 𝑥𝑒𝑥 𝑑𝑥 = 𝑥𝑒𝑥 − ∫ 𝑒𝑥 𝑑𝑥 = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶

(iii) Compute ∫
𝜋

0
𝑥 cos(𝑥) 𝑑𝑥.

Solution. Let 𝑢 = 𝑥 and 𝑑𝑣 = cos(𝑥)𝑑𝑥, so we have 𝑑𝑢 = 𝑑𝑥 and 𝑣 = sin(𝑥).

∫
𝜋

0
𝑥 cos(𝑥) 𝑑𝑥 = [𝑥 sin(𝑥)]𝜋

0 − ∫
𝜋

0
sin(𝑥) 𝑑𝑥 = [cos(𝑥)]𝜋

0 = cos(𝜋) − cos(0) = −1 − 1 = −2

(iv) Compute ∫ ln(𝑥) 𝑑𝑥.
Solution. Sometimes, we don’t want to integrate any part! Let 𝑢 = ln(𝑥) and 𝑑𝑣 = 𝑑𝑥, so we
have 𝑑𝑢 = 1

𝑥 𝑑𝑥 and 𝑣 = 𝑥.

∫ ln(𝑥) 𝑑𝑥 = 𝑥 ln(𝑥) − ∫ 𝑥
𝑥 𝑑𝑥 = 𝑥 ln(𝑥) − 𝑥 + 𝐶

This method also works for ∫ arctan(𝑥) 𝑑𝑥 and ∫ arccos(𝑥) 𝑑𝑥, etc.
(v) Compute ∫ 𝑥2 cos(𝑥) 𝑑𝑥.

Solution. We may need to apply it more than once! Let 𝑢 = 𝑥2 and 𝑑𝑣 = cos(𝑥) 𝑑𝑥, so we have
𝑑𝑢 = 2𝑥 𝑑𝑥 and 𝑣 = sin(𝑥).

∫ 𝑥2 cos(𝑥) 𝑑𝑥 = 𝑥2 sin(𝑥) − ∫ 2𝑥 sin(𝑥) 𝑑𝑥

Let 𝑢 = 2𝑥 and 𝑑𝑣 = sin(𝑥) 𝑑𝑥, so we have 𝑑𝑢 = 2 𝑑𝑥 and 𝑣 = − cos(𝑥).

= 𝑥2 sin(𝑥) − [−2𝑥 cos(𝑥) − ∫ −2 cos(𝑥) 𝑑𝑥]

= 𝑥2 sin(𝑥) + 2𝑥 cos(𝑥) − ∫ 2 cos(𝑥) 𝑑𝑥

= 𝑥2 sin(𝑥) + 2𝑥 cos(𝑥) − 2 sin(𝑥) + 𝐶
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(vi) Compute ∫ 𝑒𝑥 cos(𝑥) 𝑑𝑥.
Solution. And sometimes, we don’t integrate at all! Let 𝑢 = cos(𝑥) and 𝑑𝑣 = 𝑒𝑥 𝑑𝑥, so we have
𝑑𝑢 = − sin(𝑥) 𝑑𝑥 and 𝑣 = 𝑒𝑥.

𝐼 = ∫ 𝑒𝑥 cos(𝑥) 𝑑𝑥 = 𝑒𝑥 cos(𝑥) + ∫ 𝑒𝑥 sin(𝑥) 𝑑𝑥

Let 𝑢 = sin(𝑥) and 𝑑𝑣 = 𝑒𝑥 𝑑𝑥, so we have 𝑑𝑢 = cos(𝑥) 𝑑𝑥 and 𝑣 = 𝑒𝑥.

𝐼 = 𝑒𝑥 cos(𝑥) + 𝑒𝑥 sin(𝑥) − ∫ 𝑒𝑥 cos(𝑥) 𝑑𝑥 = 𝑒𝑥 cos(𝑥) + 𝑒𝑥 sin(𝑥) − 𝐼

So, 2𝐼 = 𝑒𝑥 cos(𝑥) + 𝑒𝑥 sin(𝑥), therefore

𝐼 = 𝑒𝑥 cos(𝑥) + 𝑒𝑥 sin(𝑥)
2 + 𝐶

Neat!
(vii) Compute ∫ 𝑥3 cos(𝑥2) 𝑑𝑥.

Solution. Sometimes, a combination of methods is needed.

∫ 𝑥3 cos(𝑥2) 𝑑𝑥 = ∫ 𝑥2 cos(𝑢) 1
2𝑥 𝑑𝑢 𝑢 = 𝑥2 ⟺ 𝑑𝑢 = 2𝑥 𝑑𝑥

= 1
2 ∫ 𝑥2 cos(𝑢) 𝑑𝑢

= 1
2 ∫ 𝑢 cos(𝑢) 𝑑𝑢

Now, do integration by parts with some unfortunate (but fine) letter choices! Let 𝑢 = 𝑢 and
𝑑𝑣 = cos(𝑢) 𝑑𝑢, so we have 𝑑𝑢 = 𝑑𝑢 and 𝑣 = sin(𝑢).

= 1
2𝑢 sin(𝑢) − 1

2 ∫ sin(𝑢) 𝑑𝑢

= 1
2𝑢 sin(𝑢) + 1

2 cos(𝑢) + 𝐶

= 1
2𝑥2 sin(𝑥2) + 1

2 cos(𝑥2) + 𝐶

2.3 Partial Fractions
Partial fractions are useful for evaluating ∫ 𝑝(𝑥)

𝑞(𝑥) 𝑑𝑥 where 𝑝 and 𝑞 are polynomials.

Overall idea: break a difficult integrand into many easy ones!
REMARK 2.3.1
We will assume the degree of the denominator is larger than the degree of the numerator. If not, use
long division first!
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Table 2.1: How to Break up Fractions: The Rules
If the denominator has: Then we write:
(I) Distinct linear factors One constant per factor

(II) A repeated linear factor One constant per power
(III) Distinct irreducible quadratic factors One linear term per factor
(IV) Repeated irreducible quadratic factors One linear term per power

EXAMPLE 2.3.2: Decomposition Practice

(i) 1
(𝑥 + 1)(𝑥 + 2) = 𝐴

𝑥 + 1 + 𝐵
𝑥 + 2

(ii) 1
𝑥2(𝑥 − 1) = 𝐴

𝑥 + 𝐵
𝑥2 + 𝐶

𝑥 − 1
(iii) 𝑥3 + 𝑥 + 7

𝑥2(𝑥 + 1)2(𝑥2 + 1) = 𝐴
𝑥 + 𝐵

𝑥2 + 𝐶
𝑥 + 1 + 𝐷

(𝑥 + 1)2 + 𝐸𝑥 + 𝐹
𝑥2 + 1

(iv) 𝑥2 + 7
(𝑥 − 1)3(𝑥2 + 3)2 = 𝐴

𝑥 − 1 + 𝐵
(𝑥 − 1)2 + 𝐶

(𝑥 − 1)3 + 𝐷𝑥 + 𝐸
𝑥2 + 3 + 𝐹𝑥 + 𝐺

(𝑥2 + 3)3

(v) 𝑥10 + 5
(𝑥 + 1)3(𝑥2 + 1) = ⋯use long division first, not partial fractions

REMARK 2.3.3: What integrals could we be left with after partial fractions?

Case 1: ∫ 𝐴
𝑎𝑥 + 𝑏 𝑑𝑥 = 𝐴

𝑎 ln|𝑎𝑥 + 𝑏| + 𝐶

Case 2: ∫ 𝐴
(𝑎𝑥 + 𝑏)𝑛 𝑑𝑥 = (𝐴

𝑎 ) (𝑎𝑥 + 𝑏)−𝑛+1

−𝑛 + 1 where 𝑛 ≠ 0, 1.

Case 3: 𝐴𝑥 + 𝐵
𝑎𝑥2 + 𝑏𝑥 + 𝑐 = ∫ 𝐴𝑥

𝑎𝑥2 + 𝑏𝑥 + 𝑐 + 𝐵
𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑑𝑥

Case 4: 𝐴𝑥 + 𝐵
(𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑛

Note for Case 3 and Case 4, you may want to complete the square and use a trigonometric substitution.
A regular substitution may also work.

EXAMPLE 2.3.4: Partial Fractions (Easy)

Using partial fractions, compute ∫ 𝑥
𝑥2 − 4𝑥 − 5 𝑑𝑥.

Solution. First, we break it up with partial fractions.
𝑥

𝑥2 − 4𝑥 − 5 = 𝑥
(𝑥 + 1)(𝑥 − 5) = 𝐴

𝑥 + 1 + 𝐵
𝑥 − 5

Multiply both sides by the LHS denominator to get the following.

𝑥 = (𝑥 + 1)(𝑥 − 5) [ 𝐴
𝑥 + 1 + 𝐵

𝑥 − 5]

𝑥 = 𝐴(𝑥 − 5) + 𝐵(𝑥 + 1)
There are two ways we can solve for 𝐴 and 𝐵.
(i) Linear Algebra!

𝑥 = 𝐴𝑥 − 5𝐴 + 𝐵𝑥 + 𝐵 = (𝐴 + 𝐵)𝑥 + (−5𝐴 + 𝐵)
Therefore, 𝐴 + 𝐵 = 1 and 𝐵 − 5𝐴 = 0. Thus, 𝐴 = 1/6 and 𝐵 = 5/6.
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(ii) Substitute in “nice” values for 𝑥.

𝑥 = 5∶ 5 = 𝐴(0) + 𝐵(6)
𝑥 = 1∶ − 1 = 𝐴(−6) + 𝐵(0)

Thus, 𝐴 = 1/6 and 𝐵 = 5/6.
Either way, we get

𝑥
(𝑥 + 1)(𝑥 − 5) =

1/6
𝑥 + 1 +

5/6
𝑥 − 5

So,
∫ 𝑥

𝑥2 − 4𝑥 − 5 𝑑𝑥 = 1
6 ∫ 1

𝑥 + 1 𝑑𝑥 + 5
6 ∫ 1

𝑥 − 5 𝑑𝑥 = 1
6 ln|𝑥 + 1| + 5

6 ln|𝑥 − 5| + 𝐶

EXAMPLE 2.3.5: Partial Fractions (Slightly Difficult)

Using partial fractions, compute ∫ 𝑥 + 3
𝑥4 + 9𝑥2 𝑑𝑥.

Solution. First, we break it up with partial fractions.

𝑥 + 3
𝑥4 + 9𝑥2 = 𝑥 + 3

𝑥2(𝑥2 + 9) = 𝐴
𝑥 + 𝐵

𝑥2 + 𝐶𝑥 + 𝐷
𝑥2 + 9

Multiply both sides by 𝑥2(𝑥2 + 9) to get the following.

𝑥 + 3 = 𝑥(𝑥2 + 9)𝐴 + (𝑥2 + 9)𝐵 + 𝑥2(𝐶𝑥 + 𝐷)
𝑥 + 3 = 𝐴𝑥3 + 9𝐴𝑥 + 𝐵𝑥2 + 9𝐵 + 𝐶𝑥3 + 𝐷𝑥2

𝑥 + 3 = (𝐴 + 𝐶)𝑥3 + (𝐵 + 𝐷)𝑥2 + 9𝐴𝑥 + 9𝐵

Therefore, 𝐴 + 𝐶 = 0, 𝐵 + 𝐷 = 0, 9𝐴 = 1, and 9𝐵 = 3. Thus, 𝐴 = 1/9, 𝐵 = 1/3, 𝐶 = −1/9, and
𝐷 = −1/3. So,

∫ 𝑥 + 3
𝑥4 + 9𝑥2 𝑑𝑥 = 1

9 ∫ 1
𝑥 𝑑𝑥 + 1

3 ∫ 1
𝑥2 𝑑𝑥 − 1

9 ∫ 𝑥
𝑥2 + 9 𝑑𝑥 − 1

3 ∫ 1
𝑥2 + 9 𝑑𝑥

= 1
9 ln|𝑥| − 1

3𝑥 − 1
9 ∫ 𝑥

𝑥2 + 9 𝑑𝑥 − 1
3 [1

3 arctan(𝑥
3 )]

where we computed ∫ 1
𝑥2 + 9 𝑑𝑥 with 2.3.6.

For ∫ 𝑥
𝑥2 + 9 𝑑𝑥, use a substitution: 𝑢 = 𝑥2 + 9 ⟺ 𝑑𝑢 = 2𝑥 𝑑𝑥.

∫ 𝑥
𝑥2 + 9 𝑑𝑥 = ∫ 𝑥

𝑢
1

2𝑥 𝑑𝑢 = 1
2 ∫ 1

𝑢 𝑑𝑢 = ln|𝑢|
2 + 𝐶 = ln∣𝑥2 + 9∣

2 + 𝐶

So, the final answer is:
1
9 ln|𝑥| − 1

3𝑥 − 1
18 ln∣𝑥2 + 9∣ − 1

9 arctan(𝑥
3 ) + 𝐶
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REMARK 2.3.6: Useful Identity

∫ 1
𝑥2 + 𝑘2 𝑑𝑥 = 1

𝑘 arctan(𝑥
𝑘 ) + 𝐶

EXAMPLE 2.3.7: Partial Fractions (Long Division)

Compute ∫ 𝑥3 − 2𝑥
𝑥2 + 3𝑥 + 2 𝑑𝑥.

Solution. Using long division, we get

∫ 𝑥 − 3 + 5𝑥 + 6
𝑥2 + 3𝑥 + 2 𝑑𝑥

Now,
5𝑥 + 6

𝑥2 + 3𝑥 + 2 = 5𝑥 + 6
(𝑥 + 1)(𝑥 + 2) = 𝐴

𝑥 + 1 + 𝐵
𝑥 + 2

Therefore, 5𝑥 + 6 = 𝐴(𝑥 + 2) + 𝐵(𝑥 + 1) = 𝑥(𝐴 + 𝐵) + (2𝐴 + 𝐵). By inspection, we get 𝐵 = 4 and
𝐴 = 1. Thus, the integral is:

∫ 𝑥 − 3 + 1
𝑥 + 1 + 4

𝑥 + 2 𝑑𝑥 = 𝑥2

2 − 3𝑥 + ln|𝑥 + 1| + 4 ln|𝑥 + 2| + 𝐶

2.4 Improper Integrals
So far, we have only examined integrals of continuous, or at least bounded functions. Let’s see how to deal
with a more general collection of functions!
In particular, we will examine two types:
(1) Continuous functions over infinite intervals
(2) Functions with infinite discontinuities

In particular:

• Type I: Infinite Intervals. Integrals of the form ∫
𝑎

−∞
𝑓(𝑥) 𝑑𝑥, ∫

∞

𝑎
𝑓(𝑥) 𝑑𝑥, or ∫

∞

−∞
𝑓(𝑥) 𝑑𝑥.

• Type II: Infinite Discontinuity. For example, ∫
1

−1

1
𝑥 𝑑𝑥 as there is an issue at 𝑥 = 0.

In all cases, the idea is to replace the problematic point with a letter and take a limit.
Let’s see them in more detail now!

Type I
We replace the infinite endpoint with a letter and take a limit

• ∫
𝑎

−∞
𝑓(𝑥) 𝑑𝑥 = lim

𝑏→−∞
∫

𝑎

𝑏
𝑓(𝑥) 𝑑𝑥

• ∫
∞

𝑎
𝑓(𝑥) 𝑑𝑥 = lim

𝑏→∞
∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥
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• ∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = lim

𝑏1→−∞
∫

0

𝑏1

𝑓(𝑥) 𝑑𝑥 + lim
𝑏2→∞

∫
𝑏2

0
𝑓(𝑥) 𝑑𝑥

REMARK 2.4.1

Don’t use∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = lim

𝑏→∞
∫

𝑏

−𝑏
𝑓(𝑥) 𝑑𝑥. This is called the “Cauchy Principal Value” and it is something

else!

We say that the integral converges if all the limits exist (and are finite). The integral diverges if even one
limit does not exist (or is ±∞).

EXAMPLE 2.4.2: Type I Integrals

Evaluate the following or show they diverge.
(i) ∫

∞

2

1
𝑥2 𝑑𝑥

Solution.
∫

∞

2

1
𝑥2 𝑑𝑥 = lim

𝑏→∞
∫

𝑏

2

1
𝑥2 𝑑𝑥 = lim

𝑏→∞
[− 1

𝑥]
𝑏

2
= lim

𝑏→∞
(−1

𝑏 + 1
2) = 1

2
Thus, the integral converges.

(ii) ∫
∞

−∞
sin(𝑥) 𝑑𝑥

Solution.
∫

∞

−∞
sin(𝑥) 𝑑𝑥 = lim

𝑏1→−∞
∫

0

𝑏1

sin(𝑥) 𝑑𝑥 + lim
𝑏2→∞

∫
𝑏2

0
sin(𝑥) 𝑑𝑥

Let’s evaluate the first one:

lim
𝑏1→−∞

∫
0

𝑏1

sin(𝑥) 𝑑𝑥 = lim
𝑏1→−∞

[− cos(𝑥)]0
𝑏1

= lim
𝑏1→−∞

[− cos(0) + cos(𝑏1)]

which does not exist. Therefore, this integral diverges, there is no need to check the second limit!
(iii) ∫

∞

0

1
1 + 𝑥2 𝑑𝑥

Solution.

∫
∞

0

1
1 + 𝑥2 𝑑𝑥 = lim

𝑏→∞
∫

𝑏

0

1
1 + 𝑥2 𝑑𝑥

= lim
𝑏→∞

[arctan(𝑥)]𝑏
0

= lim
𝑏→∞

[arctan(𝑏) − arctan(0)]

= 𝜋
2 − 0

= 𝜋
2

Thus, the integral converges.

Question: For which 𝑝 ∈ R does ∫
∞

1

1
𝑥𝑝 𝑑𝑥 converge?

Let’s find out!



CHAPTER 2. TECHNIQUES OF INTEGRATION 28

Proof of 2.4.3
Case 1: 𝑝 > 1.

lim
𝑏→∞

∫
𝑏

1
𝑥−𝑝 𝑑𝑥 = lim

𝑏→∞
[ 𝑥−𝑝+1

−𝑝 + 1]
𝑏

1
= lim

𝑏→∞
( 𝑏−𝑝+1

−𝑝 + 1 − 1−𝑝+1

−𝑝 + 1) = 1
𝑝 − 1

since −𝑝 + 1 < 0, so 𝑏−𝑝+1 → 0. So, the integral converges if 𝑝 > 1.
Case 2: 𝑝 < 1. The calculation is the same as Case 1, until:

lim
𝑏→∞

( 𝑏−𝑝+1

−𝑝 + 1 − 1
−𝑝 + 1) = ∞

since −𝑝 + 1 > 0, so 𝑏−𝑝+1 → ∞. So, the integral diverges if 𝑝 < 1.
Case 3: 𝑝 = 1.

lim
𝑏→∞

∫
𝑏

1

1
𝑥 𝑑𝑥 = lim

𝑏→∞
[ln|𝑥|]𝑏

1 = lim
𝑏→∞

(ln|𝑏| − ln|1|) = ∞

So, the integral diverges if 𝑝 = 1.

Therefore, we have proven:
THEOREM 2.4.3: 𝑝-Integrals

The improper integral ∫
∞

1

1
𝑥𝑝 𝑑𝑥 converges if and only if 𝑝 > 1. If 𝑝 > 1, ∫

∞

1

1
𝑥𝑝 𝑑𝑥 = 1

𝑝 − 1 .

Next, let’s examine some properties of Type I improper integrals.
THEOREM 2.4.4: Properties of Type I Improper Integrals

Suppose ∫
∞

𝑎
𝑓(𝑥) 𝑑𝑥 and ∫

∞

𝑎
𝑔(𝑥) 𝑑𝑥 both converge.

(1) ∫
∞

𝑎
𝑐𝑓(𝑥) 𝑑𝑥 converges for any 𝑐 ∈ R, and

∫
∞

𝑎
𝑐𝑓(𝑥) 𝑑𝑥 = 𝑐 ∫

∞

𝑎
𝑓(𝑥) 𝑑𝑥

(2) ∫
∞

𝑎
𝑓(𝑥) + 𝑔(𝑥) 𝑑𝑥 converges, and

∫
∞

𝑎
𝑓(𝑥) + 𝑔(𝑥) 𝑑𝑥 = ∫

∞

𝑎
𝑓(𝑥) 𝑑𝑥 + ∫

∞

𝑎
𝑔(𝑥) 𝑑𝑥

(3) If 𝑓(𝑥) ⩽ 𝑔(𝑥) for all 𝑥 ⩾ 𝑎, then

∫
∞

𝑎
𝑓(𝑥) 𝑑𝑥 ⩽ ∫

∞

𝑎
𝑔(𝑥) 𝑑𝑥

(4) If 𝑎 < 𝑐 < ∞, then ∫∞
𝑐 𝑓(𝑥) 𝑑𝑥 converges, and

∫
∞

𝑎
𝑓(𝑥) 𝑑𝑥 = ∫

𝑐

𝑎
𝑓(𝑥) 𝑑𝑥 + ∫

∞

𝑐
𝑓(𝑥) 𝑑𝑥
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Evaluating integrals in general is hard, and determining if an improper integral converges may be even
harder! However, we do have a way of comparing a difficult integral to a simpler one (for example, a 𝑝-
Integral!).

The Comparison Theorem (For Type I)

THEOREM 2.4.5: Comparison Test for Type I Improper Integrals

Assume 0 ⩽ 𝑔(𝑥) ⩽ 𝑓(𝑥) for all 𝑥 ⩾ 𝑎 and that both 𝑓 and 𝑔 are continuous on [𝑎, ∞).
(1) If ∫

∞

𝑎
𝑓(𝑥) 𝑑𝑥 converges, then so does ∫

∞

𝑎
𝑔(𝑥) 𝑑𝑥.

(2) If ∫
∞

𝑎
𝑓(𝑥) 𝑑𝑥 diverges, then so does ∫

∞

𝑎
𝑔(𝑥) 𝑑𝑥.

EXAMPLE 2.4.6

Determine if ∫
∞

0
𝑒−𝑥2 𝑑𝑥 converges or diverges.

Solution. Note for 𝑥 > 1, 0 ⩽ 𝑒−𝑥2 < 𝑒−𝑥, by comparison since ∫
∞

0
𝑒−𝑥2 𝑑𝑥 converges, so does

∫
∞

0
𝑒−𝑥2 𝑑𝑥.

REMARK 2.4.7

It doesn’t matter that the inequality doesn’t hold for 0 ⩽ 𝑥 < 1, since ∫1
0 𝑒−𝑥2 𝑑𝑥 is not improper and

so converges.

EXAMPLE 2.4.8
Determine of the following integrals converge or diverge.
(i) ∫

∞

1

𝑥
(𝑥2 + 2)2 𝑑𝑥.

Solution. Note that 0 ⩽ 𝑥
(𝑥2 + 2)2 ⩽ 𝑥

𝑥4 = 1
𝑥3 , for 𝑥 ⩾ 1.

Since ∫
∞

1

1
𝑥3 𝑑𝑥 converges (𝑝-integral), so does ∫

∞

1

𝑥
(𝑥2 + 2)2 𝑑𝑥, by comparison.

(ii) ∫
∞

1

2𝑥2

𝑥3 − 𝑥 + 1 𝑑𝑥.

Solution. Note that 2𝑥2

𝑥3 − 𝑥 + 1 ⩾ 2𝑥2

𝑥3 + 1 ⩾ 2𝑥2

𝑥3 + 𝑥3 = 2
2𝑥 = 1

𝑥 ⩾ 0, for 𝑥 ⩾ 1.

Since ∫
∞

1

1
𝑥 𝑑𝑥 diverges (𝑝-integral), so does ∫

∞

1

2𝑥
𝑥3 − 𝑥 + 1 𝑑𝑥, by comparison.

(iii) ∫
∞

1

1 + 𝑒−𝑥

𝑥 𝑑𝑥.

Solution. Note that 1 + 𝑒−𝑥

𝑥 ⩾ 1
𝑥 ⩾ 0, for 𝑥 ⩾ 1.

Since ∫
∞

1

1
𝑥 𝑑𝑥 diverges, so does ∫

∞

1

1 + 𝑒−𝑥

𝑥 𝑑𝑥, by comparison.

(iv) ∫
∞

0

𝑒𝑥

𝑒2𝑥 + 3 𝑑𝑥.
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Solution. Note that 0 ⩽ 𝑒𝑥

𝑒2𝑥 + 3 ⩽ 𝑒𝑥

𝑒2𝑥 = 𝑒−𝑥, for 𝑥 ⩾ 0.

Since ∫
∞

0
𝑒−𝑥 𝑑𝑥 converges, so does ∫

∞

0

𝑒𝑥

𝑒2𝑥 + 3 𝑑𝑥, by comparison.

The comparison theorem is fantastic, but it only works on non-negative functions. How can we deal with
negative functions?
We can use absolute values!

DEFINITION 2.4.9: Absolute convergence

Let 𝑓 be integrable on [𝑎, 𝑏) for all 𝑏 ⩾ 𝑎. We say that the improper integral ∫
∞

𝑎
𝑓(𝑥) 𝑑𝑥 converges

absolutely if ∫
∞

𝑎
|𝑓(𝑥)| 𝑑𝑥 converges.

THEOREM 2.4.10: Absolute Convergence Theorem (ACT)

Let 𝑓 be integrable on [𝑎, 𝑏] for all 𝑏 ⩾ 𝑎. Then |𝑓| is also integrable on [𝑎, 𝑏] for all 𝑏 ⩾ 𝑎. Moreover, if we
assume that ∫

∞

𝑎
|𝑓(𝑥)| 𝑑𝑥 converges, then so does ∫

∞

𝑎
𝑓(𝑥) 𝑑𝑥.

In particular, if |𝑓(𝑥)| ⩽ 𝑔(𝑥) for all 𝑥 ⩾ 𝑎, both 𝑓 and 𝑔 are integrable on [𝑎, 𝑏] for all 𝑏 ⩾ 𝑎, and if
∫

∞

𝑎
𝑔(𝑥) 𝑑𝑥 converges, then so does ∫

∞

𝑎
𝑓(𝑥) 𝑑𝑥.

Proof of 2.4.10

Suppose ∫∞
𝑎 |𝑓(𝑥)| 𝑑𝑥 converges. Then so does

∫
∞

𝑎
2|𝑓(𝑥)| 𝑑𝑥.

Note that
0 ⩽ 𝑓(𝑥) + |𝑓(𝑥)| ⩽ 2|𝑓(𝑥)|,

so by comparison,
∫

∞

𝑎
𝑓(𝑥) + |𝑓(𝑥)| 𝑑𝑥

converges. But
∫

∞

𝑎
𝑓(𝑥) 𝑑𝑥 = ∫

∞

𝑎
𝑓(𝑥) + |𝑓(𝑥)| 𝑑𝑥 − ∫

∞

𝑎
|𝑓(𝑥)| 𝑑𝑥

converges, since both components do.

EXAMPLE 2.4.11

Determine if ∫
∞

1

sin(𝑥)
𝑥2 + 1 𝑑𝑥 converges or diverges.

Solution. We can’t use comparison directly since sin(𝑥) < 0 sometimes. But,

0 ⩽ ∣ sin(𝑥)
𝑥2 + 1∣ ⩽ 1

𝑥2 + 1 ⩽ 1
𝑥2
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for 𝑥 ⩾ 1, and ∫
∞

1

1
𝑥2 𝑑𝑥 converges. So by ACT, ∫

∞

1

sin(𝑥)
1 + 𝑥2 𝑑𝑥 converges.

Now, let’s switch to Type II improper integrals. We will see how to deal with them, but we won’t go as deeply
into them.

Type II

Consider ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

• If 𝑓 has an infinite discontinuity at 𝑥 = 𝑎, then we use

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = lim

𝑡→𝑎+
∫

𝑏

𝑡
𝑓(𝑥) 𝑑𝑥

• If 𝑓 has an infinite discontinuity at 𝑥 = 𝑏, then we use

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = lim

𝑡→𝑏−
∫

𝑏

𝑡
𝑓(𝑥) 𝑑𝑥

• If 𝑓 is not continuous at 𝑐, 𝑎 < 𝑐 < 𝑏, then we write

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = ∫

𝑐

𝑎
𝑓(𝑥) 𝑑𝑥 + ∫

𝑏

𝑐
𝑓(𝑥) 𝑑𝑥

and use the limits as the previous cases.
Again, if all limit(s) exist, then we say the integral converges. If even one limit does not exist, then the
integral diverges.

EXAMPLE 2.4.12
Determine of the following integrals converge or diverge.
(i) ∫

1

0

1√
1 − 𝑥 𝑑𝑥.

Solution. There is a problem at 𝑥 = 1. So,

∫
1

0

1√
1 − 𝑥 𝑑𝑥 = lim

𝑡→1−
∫

𝑡

0

1√
1 − 𝑥 𝑑𝑥 = lim

𝑡→1−
[−2

√
1 − 𝑥]𝑡

0 = lim
𝑡→1−

[−2
√

1 − 𝑡 + 2
√

1] = 2

Thus, the integral converges.
(ii) ∫

3

2

𝑥
(𝑥2 − 4)2 𝑑𝑥

Solution. There is a problem at 𝑥 = 2, but let’s make a substitution first! Let 𝑢 = 𝑥2 − 4, so
𝑑𝑢 = 2𝑥 𝑑𝑥. If 𝑥 = 2, 𝑢 = 0, and if 𝑥 = 3, 𝑢 = 5. So,

∫
3

2

𝑥
(𝑥2 − 4)2 𝑑𝑥 = ∫

5

0

𝑥
𝑢2

1
2𝑥 𝑑𝑢 = lim

𝑡→0+

1
2 ∫

5

𝑡

1
𝑢2 𝑑𝑢 = lim

𝑡→0+
[− 1

2𝑢]
5

𝑡
= lim

𝑡→0+
[− 1

10 + 1
2𝑡] = ∞

Thus, the integral diverges.
(iii) ∫

3

0

1
(𝑥 − 2)1/3

𝑑𝑥.
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Solution. There is a problem at 𝑥 = 2.

∫
3

0

1
(𝑥 − 2)1/3

𝑑𝑥 = ∫
2

0

1
(𝑥 − 2)1/3

𝑑𝑥 + ∫
3

2

1
(𝑥 − 2)1/3

𝑑𝑥

= lim
𝑡1→2−

∫
𝑡1

0

1
(𝑥 − 2)1/3

𝑑𝑥 + lim
𝑡2→2+

∫
3

𝑡2

1
(𝑥 − 2)1/3

𝑑𝑥

= lim
𝑡1→2−

[3
2(𝑥 − 2)2/3]

𝑡1

0
+ lim

𝑡2→2+
[3

2(𝑥 − 2)2/3]
3

𝑡2

= lim
𝑡1→2−

3
2 [(𝑡1 − 2)2/3 − (0 − 2)2/3] + lim

𝑡2→2+

3
2 [(3 − 2)2/3 − (𝑡2 − 2)2/3]

= −3
2(−2)2/3 + 3

2
Thus, the integral converges.

EXERCISE 2.4.13

Show ∫
1

0

1
𝑥𝑝 𝑑𝑥 converges if and only if 𝑝 < 1.
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Applications of Integration

3.1 Area Between Curves
Suppose we want to calculate the area of the region between 𝑓 and 𝑔.

𝑎 𝑏

𝑓(𝑥)

𝑔(𝑥)

𝑑𝑥

Area

This is the area under 𝑓 minus the area “under” (between 𝑔 and the 𝑥-axis) 𝑔.
Using the same ideas as before, we divide the region into infinitely many infinitely thin rectangles (each with
width 𝑑𝑥 ≈ 𝛥𝑥) and integrate!
So, for 𝑓 ⩾ 𝑔, the area bounded by 𝑓 and 𝑔 from 𝑥 = 𝑎 to 𝑥 = 𝑏 is

∫
𝑏

𝑎
𝑓(𝑥) − 𝑔(𝑥) 𝑑𝑥

EXAMPLE 3.1.1
Find the area between 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) = 𝑥 from 𝑥 = 1 to 𝑥 = 3.
Solution. Since 𝑥2 ⩾ 𝑥 for 𝑥 ∈ [1, 3], we get

Area = ∫
3

1
𝑥2 − 𝑥 𝑑𝑥 = [𝑥3

3 − 𝑥2

2 ]
3

1
= (27

3 − 9
2) − (1

3 − 1
2) = 14

3

33
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REMARK 3.1.2
You should always get a positive answer! If your answer is negative you should go check your work!
Note that the “upper” curve may change over the interval.

Actual Formula: Area between 𝑓 and 𝑔 from 𝑥 = 𝑎 to 𝑥 = 𝑏 is

∫
𝑏

𝑎
|𝑓(𝑥) − 𝑔(𝑥)| 𝑑𝑥

So, we should split up the interval [𝑎, 𝑏] to eliminate the absolute value.

Remember, ∫
𝑏

𝑎
“upper” − “lower” 𝑑𝑥.

EXAMPLE 3.1.3
Find the area enclosed by 𝑓(𝑥) = 1 − 𝑥2 and 𝑔(𝑥) = 𝑥2.
Solution. First, we need to find the intersection points: 1 − 𝑥2 = 𝑥2 ⟺ 1 = 2𝑥2 ⟺ 𝑥 = ± 1√

2
.

If 𝑥 ∈ [− 1√
2

, 1√
2

], then 1 − 𝑥2 ⩾ 𝑥2, so we get:

Area = ∫
1/√

2

−1/√
2

(1 − 𝑥2) − 𝑥2 𝑑𝑥

= ∫
1/√

2

−1/√
2

1 − 2𝑥2 𝑑𝑥

= [𝑥 − 2
3𝑥3]

1/√
2

−1/√
2

= ( 1√
2

− 2
3 ( 1√

2
)

3
) − (− 1√

2
− 2

3 (− 1√
2

)
3
)

= 2√
2

− 4
3 ( 1√

2
)

3

= 2√
2

− 2
3
√

2
= 4

3
√

2

EXAMPLE 3.1.4
Find the area between 𝑓(𝑥) = sin(𝑥) and 𝑔(𝑥) = cos(𝑥) from 𝑥 = 0 to 𝑥 = 𝜋.
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Solution. From 𝑥 = 0 to 𝑥 = 𝜋/4: cos(𝑥) ⩾ sin(𝑥). From 𝜋/4 to 𝑥 = 𝜋: sin(𝑥) ⩾ cos(𝑥). So, the area is:

𝐴 = ∫
𝜋/4

0
cos(𝑥) − sin(𝑥) 𝑑𝑥 + ∫

𝜋

𝜋/4

sin(𝑥) − cos(𝑥) 𝑑𝑥

= [sin(𝑥) + cos(𝑥)]
𝜋/4

0 + [− cos(𝑥) − sin(𝑥)]𝜋
𝜋/4

= sin(𝜋
4 ) + cos(𝜋

4 ) − sin(0) − cos(0) − cos(𝜋) − sin(𝜋) + cos(𝜋
4 ) + sin(𝜋

4 )

=
√

2
2 +

√
2

2 − 1 + 1 +
√

2
2 +

√
2

2
= 2

√
2

We can use the same ideas to compute areas when 𝑥 is a function of 𝑦, except we use

“outer” − “inner” or “right” − “left”

EXAMPLE 3.1.5
Find the area between 𝑥 = 𝑦2 + 1 and 𝑦 = 𝑥 from 𝑦 = 0 to 𝑦 = 2.

2 40

-2

2

Are
a

Solution. For 𝑦 ∈ [0, 2]: 𝑦2 + 1 ⩾ 𝑦, so:

𝐴 = ∫
2

0
𝑦2 + 1 − 𝑦 𝑑𝑦

= [𝑦3

3 + 𝑦 − 𝑦2

2 ]
2

0

= 8
3 + 2 − 2

= 8
3

3.2 Volumes of Revolution
As we did for areas between curves, we can use our knowledge of integrals to compute the volume of certain
objects: ones obtained by rotating a region about a horizontal or vertical line!
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𝑟

Figure 3.1: Area of a disk with radius 𝑟: 𝜋𝑟2

𝑟out

𝑟in

Figure 3.2: Area of a washer with outer radius 𝑟out and inner radius 𝑟in: 𝜋(𝑟out)2 − 𝜋(𝑟in)2

REMARK 3.2.1
For more general shapes, we need multivariable methods. These are explored in MATH 237!

Let’s get a formula!
Areas:

• Area of one infinitesimally thin rectangle: 𝑓(𝑥) 𝑑𝑥

• Overall area: ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

Volumes (rotate 𝑓 around 𝑥-axis):
• Volume of one infinitesimally thin slice: 𝐴(𝑥) 𝑑𝑥

• Overall volume: ∫
𝑏

𝑎
𝐴(𝑥) 𝑑𝑥

So, we just need to determine 𝐴(𝑥) in each case! There are a few different methods we will use.
The two main methods are:
(I) Washers/disks (i.e., cross-sections)
(II) Cylindrical shells

Method 1: Washers/disks
First, let’s recall the area formulas:

EXAMPLE 3.2.2

Find the volume of the solid obtained by rotating 𝑓(𝑥) =
√

𝑥 − 1 about the 𝑥-axis from 𝑥 = 1 to 𝑥 = 5.
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-1 1 2 3 4 50

-2

2

-1 1 2 3 4 50

-2

2

Solution. The cross-section is a disk with radius
√

𝑥 − 1. So

𝐴(𝑥) = 𝜋 (
√

𝑥 − 1)2 = 𝜋(𝑥 − 1)

and

Volume = ∫
5

1
𝐴(𝑥) 𝑑𝑥

= ∫
5

1
𝜋(𝑥 − 1) 𝑑𝑥

= 𝜋 [𝑥2

2 − 𝑥]
5

1

= 𝜋 (25
2 − 5 − 1

2 + 1)

= 8𝜋

Note that you don’t need to draw the full 3-D image, just one area slice is enough!
EXAMPLE 3.2.3
Rotate the area between 𝑦 = √𝑥 and 𝑦 = 𝑥2 about the line 𝑦 = 1.
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1 20

1

2

Solution. The cross-section is a washer with 𝑟out = 1 − 𝑥2 and 𝑟in = 1 − √𝑥. So,

𝐴(𝑥) = 𝜋(𝑟out)2 − 𝜋(𝑟in)2

= 𝜋 [(1 − 𝑥2)2 − (1 − √𝑥)2]
= 𝜋(1 − 2𝑥2 + 𝑥4 − 1 + 2√𝑥 − 𝑥)
= 𝜋(𝑥4 − 2𝑥2 + 2√𝑥 − 𝑥)

and

Volume = ∫
1

0
𝐴(𝑥) 𝑑𝑥

= 𝜋 ∫
1

0
𝑥4 − 2𝑥2 + 2𝑥1/2 − 𝑥 𝑑𝑥

= 𝜋 [𝑥5

5 − 2
3𝑥3 + 4

3𝑥3/2 − 𝑥2

2 ]
1

0

= 𝜋 (1
5 − 2

3 + 4
3 − 1

2)

= 11𝜋
30

EXAMPLE 3.2.4
Rotate the region between 𝑥 = 𝑦2 and 𝑥 = 2𝑦 about the 𝑦-axis.
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2 40

2

4

Solution. First, points of intersection: 𝑦2 = 2𝑦 ⟹ 𝑦 = 0, 2. The cross-section is a washer with
𝑟out = 2𝑦 and 𝑟in = 𝑦2. So,

𝐴(𝑦) = 𝜋 (2𝑦)2 − 𝜋 (𝑦2)2

= 𝜋 (4𝑦2 − 𝑦4)

and

Volume = 𝜋 ∫
2

0
4𝑦2 − 𝑦4 𝑑𝑦

= exercise

= 64𝜋
15

We can see that washers/disks arise when we rotate functions of 𝑥 about a horizontal line or functions of 𝑦
about a vertical line.
We can’t use it all the time though, for example: rotate the region below 𝑦 = 2𝑥2 − 𝑥3 about the 𝑦-axis from
𝑥 = 0 to 𝑥 = 2.
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1 20

1

We need another method!

Method 2: Cylindrical shells
Instead of using cross-sections, we can use cylindrical shells (think soup can labels) to divide the volume
up!
Q: What is the area of a cylindrical shell with base radius 𝑟 and height ℎ?

cut and unroll!

So area is 2𝜋𝑟ℎ. So, we only need to determine 𝑟 and ℎ!
Back to the difficult example:

EXAMPLE 3.2.5
Rotate the region below 𝑦 = 2𝑥2 − 𝑥3 about the 𝑦-axis from 𝑥 = 0 to 𝑥 = 2.



CHAPTER 3. APPLICATIONS OF INTEGRATION 41

-1 1 20

-1

1

Solution. The area is a cylindrical shell with radius 𝑟 = 𝑥 and height ℎ = 2𝑥2 − 𝑥3. So,

𝐴(𝑥) = 2𝜋𝑥 (2𝑥2 − 𝑥3)

and
Volume = ∫

2

0
2𝜋𝑥 (2𝑥2 − 𝑥3) 𝑑𝑥

EXAMPLE 3.2.6
Find the volume in each case.
(i) Rotate the region between 𝑦 = 𝑥2 and 𝑦 = 6𝑥 − 𝑥2 about the 𝑦-axis.

Solution. Intersection points: 𝑥2 = 6𝑥 − 2𝑥2 ⟹ 𝑥 = 0, 2
• 𝑟 = 𝑥
• ℎ = 6𝑥 − 2𝑥2 − 𝑥2 = 6𝑥 − 3𝑥2

𝐴(𝑥) = 2𝜋𝑥 (6𝑥 − 3𝑥2)

𝑉 = ∫
2

0
2𝜋𝑥 (6𝑥 − 3𝑥2) 𝑑𝑥

= 2𝜋 ∫
2

0
6𝑥2 − 3𝑥3 𝑑𝑥

= 2𝜋 [2𝑥3 − 3
4𝑥4]

2

0
= 2𝜋 (16 − 12)
= 8𝜋

(ii) Rotate the region bounded by 𝑦 = 4𝑥 − 𝑥3 and 𝑦 = 3 about 𝑥 = 1.
Solution. Intersection points: 4𝑥 − 𝑥2 = 3 ⟹ 𝑥 = 1, 3

• 𝑟 = 𝑥 − 1
• ℎ = 4𝑥 − 𝑥3 − 3

𝐴(𝑥) = 2𝜋(𝑥 − 1)(4𝑥 − 𝑥2 − 3)
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𝑉 = ∫
3

1
2𝜋(𝑥 − 1)(4𝑥 − 𝑥2 − 3) 𝑑𝑥

= exercise

= 8𝜋
3

We will now look at some more practice examples, but first a handy table:

Functions of 𝑥 Functions of 𝑦
Vertical line Cylindrical shells Washers/disks

Horizontal line Washers/disks Cylindrical shells

EXAMPLE 3.2.7: More Practice
Set up, but don’t evaluate the integral(s) that would give the desired volume.
(i) Rotate the region bounded by 𝑥𝑦 = 1, 𝑥 = 0, 𝑦 = 1, 𝑦 = 3, around the 𝑥-axis.

Solution 1. Cylindrical shell:
• 𝑟 = 𝑦
• ℎ = 1/𝑦

𝐴(𝑦) = 2𝜋𝑦 (1
𝑦 ) = 2𝜋

𝑉 = ∫
3

1
2𝜋 𝑑𝑦 = 4𝜋

Solution 2. For fun, can we do it using washers/disks?
A: Yes! Just work with 𝑥 and not 𝑦.

• 𝑟out = {3 0 ⩽ 𝑥 ⩽ 1/3
1/𝑥 1/3 ⩽ 𝑥 ⩽ 1

• 𝑟in = 1

𝑉 = ∫
1/3

0
𝜋(3)2 − 𝜋(1)2 𝑑𝑥 + ∫

1

1/3

𝜋 ( 1
𝑥)

2
− 𝜋(1)2 𝑑𝑥

This method was more difficult, because 𝑟out changes, but it is still valid!
(ii) Region bounded by 𝑥 = (𝑦 − 1)2, 𝑥 = 𝑦 + 1, about 𝑥 = −1.

Solution. Points of intersection:

(𝑦 − 1)2 = 𝑦 + 1 ⟹ 𝑦 = 0, 3

• 𝑟out = 𝑦 + 1 − (−1) = 𝑦 + 2
• 𝑟in = (𝑦 − 1)2 − (−1) = (𝑦 − 1)2 + 1

𝑉 = 𝜋 ∫
3

0
(𝑦 + 2)2 − [(𝑦 − 1)2 + 1]2 𝑑𝑦



Chapter 4

Differential Equations

4.1 Introduction to Differential Equations
DEFINITION 4.1.1: Ordinary Differential Equation

An equation containing derivatives of a dependent variable (i.e., function) 𝑦 = 𝑓(𝑥) is called an ordi-
nary differential equation (ODE).

REMARK 4.1.2
To contrast, there are also partial differential equations for multivariable functions.

EXAMPLE 4.1.3: Ordinary Differential Equations

• 𝑦′ + 2𝑦 = 𝑒𝑥

• 𝑦′′ + 𝑦′ + 𝑦 = 0
• 𝑥2𝑦′ + 𝑦 = 31

DEFINITION 4.1.4: Order
The order of an ODE is the order of the highest derivative that appears.

EXAMPLE 4.1.5: Order
• 𝑦′′ + 𝑦3 = 0: order 2
• 𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑑𝑦
𝑑𝑥 = 𝑦: order 2

• 𝑦′ + 𝑦 = sin(𝑥): order 1

DEFINITION 4.1.6: Linear
An ODE is called linear if it contains only linear functions in 𝑦, 𝑦′, 𝑦′′, etc.

EXAMPLE 4.1.7: Linear and Non-linear ODEs
• 3𝑦′′ + 2𝑥3𝑦 = cos(𝑥): linear
• 𝑦2 + 𝑦′ = 0: not linear (𝑦2)
• 𝑦𝑦′ = 0: not linear

43
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DEFINITION 4.1.8: General Solution
The general solution of an ODE is the collection of all possible solutions including arbitrary constants.

DEFINITION 4.1.9: Particular Solution
A particular solution is a solution in which all arbitrary constants have been determined.

DEFINITION 4.1.10: Initial Conditions
To get a particular solution, we would need some additional info, like values of 𝑦, 𝑦′, 𝑦′′, etc. for certain
𝑥-values. These are called initial conditions.

An ODE together with initial conditions is called an initial value problem (IVP).
In general, solving ODEs is difficult.

EXAMPLE 4.1.11
• 𝑦′ = 𝑥 − 𝑦2: impossible to solve
• 𝑦′ = 𝑦 − 𝑥2: easy to solve (next week!)

Soon, we will learn some techniques to solve certain ODEs, but for now we can only find some simple solu-
tions.

EXAMPLE 4.1.12
What constant functions satisfy

𝑦′ = 𝑦3 + 2𝑦2 − 80𝑦
Solution. If 𝑦 = 𝐶, a constant, then 𝑦′ = 0, so we can get

0 = 𝐶3 + 2𝐶2 − 80𝐶 = 𝐶(𝐶 + 10)(𝐶 − 8)

Therefore, 𝐶 = 0, −10, 8. 𝐶 is also known as equilibrium solutions.

4.2 Separable Differential Equations
In this course, we will consider first-order ODEs that can be written in the form

𝑦′ = 𝑓(𝑥, 𝑦)

That is, we can solve for 𝑦′.
DEFINITION 4.2.1: Separable

A separable ODE is a first-order ODE that can be written as 𝑑𝑦
𝑑𝑥 = 𝑔(𝑦)ℎ(𝑥); that is, we can factor the

RHS into a product of functions, one containing only 𝑥’s and one containing only 𝑦’s.
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To solve a separable ODE, move 𝑔(𝑦) to the LHS and integrate both sides with respect to 𝑥.

𝑑𝑦
𝑑𝑥 = 𝑔(𝑦)ℎ(𝑥) ⟹ 1

𝑔(𝑦)
𝑑𝑦
𝑑𝑥 = ℎ(𝑥)

⟹ ∫ 1
𝑔(𝑦)

𝑑𝑦
𝑑𝑥 𝑑𝑥 = ∫ ℎ(𝑥) 𝑑𝑥

⟹ ∫ 1
𝑔(𝑦) 𝑑𝑦 = ∫ ℎ(𝑥) 𝑑𝑥

Now, integrate each side!
REMARK 4.2.2
What is going on in the last step? A substitution! Say 𝑦 = 𝑓(𝑥), then 𝑑𝑦 = 𝑓 ′(𝑥) 𝑑𝑥. Therefore, the
LHS is:

∫ 1
𝑔(𝑓(𝑥))𝑓 ′(𝑥) 𝑑𝑥 = ∫ 1

𝑔(𝑦) 𝑑𝑦

EXAMPLE 4.2.3

Solve 𝑑𝑦
𝑑𝑥 = 𝑥

𝑦 , find the general solution.
Solution.

𝑑𝑦
𝑑𝑥 = 𝑥

𝑦 ⟹ ∫ 𝑦 𝑑𝑦 = ∫ 𝑥 𝑑𝑥 ⟹ 𝑦2

2 = 𝑥2

2 + 𝐶

Solve for 𝑦 if possible: 𝑦 = ±
√

𝑥2 + 2𝐶 or 𝑦 = ±√𝑥2 + 𝐶1.

EXAMPLE 4.2.4

Find the particular solution to the IVP 𝑑𝑦
𝑑𝑥 = 3𝑥2 + 4𝑥 + 2

2𝑦 − 2 with 𝑦(0) = −1.
Solution.

∫ 2𝑦 − 2 𝑑𝑦 = ∫ 3𝑥2 + 4𝑥 + 2 𝑑𝑥 ⟹ 𝑦2 − 2𝑦 = 𝑥3 + 2𝑥2 + 2𝑥 + 𝐶

Next, get 𝐶 by using 𝑦(0) = −1.

(−1)2 − 2(−1) = 0 + 0 + 0 + 𝐶 ⟹ 𝐶 = 3

So, 𝑦2 − 2𝑦 = 𝑥3 + 2𝑥2 + 2𝑥 + 3. We can solve for 𝑦 if we complete the square on the LHS:

𝑦2 − 2𝑦 = 𝑥3 + 2𝑥2 + 2𝑥 + 3
(𝑦 − 1)2 − 1 = 𝑥3 + 2𝑥2 + 2𝑥 + 3

𝑦 = 1 ± √𝑥3 + 2𝑥2 + 2𝑥 + 4

but, only one satisfies 𝑦(0) = −1:

𝑦 = 1 − √𝑥3 + 2𝑥2 + 2𝑥 + 4

REMARK 4.2.5
Watch out for dividing by zero! If you see a possible divide by zero (with 𝑦), then deal with that case
separately.
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EXAMPLE 4.2.6

Find the general solution to 𝑑𝑦
𝑑𝑥 = 𝑦 cos(𝑥)

1 + 2𝑦2 .

Solution. We get ∫ 1 + 2𝑦2

𝑦 𝑑𝑦 = ∫ cos(𝑥) 𝑑𝑥 if 𝑦 ≢ 0 “not identically” meaning not the constant
function 0.

∫ 1
𝑦 + 2𝑦 𝑑𝑦 = sin(𝑥) + 𝐶 ⟹ ln(𝑦) + 𝑦2 = sin(𝑥) + 𝐶

(can’t solve for 𝑦).
But what if 𝑦 ≡ 0? Then, 𝑑𝑦

𝑑𝑥 = 0, and the ODE becomes 0 = 0 which is true for all 𝑥! So, 𝑦 ≡ 0 is also
a solution.
Therefore, the general solution is

ln(𝑦) + 𝑦2 = sin(𝑥) + 𝐶 or 𝑦 ≡ 0

Note that the 𝑦 ≡ 0 solution (which is an equilibrium solution) is also called a singular solution since
you can’t get it by choosing 𝐶.

EXAMPLE 4.2.7

Find a particular solution for the IVP 𝑑𝑦
𝑑𝑥 = 𝑥𝑦 with 𝑦(0) = 1.

Solution. We get ∫ 1
𝑦 𝑑𝑦 = ∫ 𝑥 𝑑𝑥 if 𝑦 ≢ 0, but note that 𝑦(0) = 1, so 𝑦 ≢ 0!

ln|𝑦| = 𝑥2

2 + 𝐶
|𝑦| = 𝑒𝑥2/2 + 𝐶 = 𝑒𝐶𝑒𝑥2/2

𝑦 = ±𝑒𝐶𝑒𝑥2/2 say 𝐴 = ±𝑒𝐶

𝑦 = 𝐴𝑒𝑥2/2

Use 𝑦(0) = 1 to get 𝐴: 1 = 𝐴𝑒0 = 𝐴, so 𝑦 = 𝑒𝑥2/2.

Sometimes an ODE isn’t separable, but a substitution will make it separable.
Common substitutions: 𝑉 = 𝑦 + 𝑥, 𝑉 = 𝑦/𝑥, 𝑉 = 𝑦′, etc.

EXAMPLE 4.2.8

Solve 𝑑𝑦
𝑑𝑥 = (𝑥 + 𝑦)2 − 1

Solution. This ODE is not separable, but let 𝑉 = 𝑥 + 𝑦, so 𝑉 ′ = 1 + 𝑦′ or 𝑦′ = 𝑉 ′ − 1. So,

𝑉 ′ − 1 = 𝑉 2 − 1 ⟹ 𝑉 ′ = 𝑉 2

Now it’s separable! Therefore,
∫ 1

𝑉 2 𝑑𝑉 = ∫ 𝑑𝑥

if 𝑉 ≢ 0.
− 1

𝑉 = 𝑥 + 𝐶 ⟹ 𝑉 = − 1
𝑥 + 𝐶

but 𝑉 = 𝑥 + 𝑦, so
𝑥 + 𝑦 = − 1

𝑥 + 𝐶



CHAPTER 4. DIFFERENTIAL EQUATIONS 47

so we get
𝑦 = −𝑥 − 1

𝑥 + 𝐶

What if 𝑉 ≡ 0? Then 𝑦 = −𝑥, and 𝑑𝑦
𝑑𝑥 = −1, the ODE becomes −1 = −1 which is true for all 𝑥! So,

𝑦 = −𝑥 is another solution. Thus,

𝑦 = −𝑥 or 𝑦 = −𝑥 − 1
𝑥 + 𝐶

Application: Mixing Problems
Suppose a tank has 1000 L of salt water at an initial concentration of 0.1 kg/L.
Salt water of concentration 0.3 kg/L flows in at a rate of 10 L/min. The solution is kept well-mixed, and
drains out at the same rate.
Let 𝑋(𝑡) = the amount of salt in the tank at time 𝑡.
Then,

𝑑𝑥
𝑑𝑡 = (rate in) − (rate out)

= (10 L/min)(0.3kg/L) − (conc. in tank)(10 L/min)

Therefore,

(conc. in tank) = Amount of salt
volume

= 𝑥
1000 since volume doesn’t change

So,
𝑑𝑥
𝑑𝑡 = 3 − 𝑥

100
= 300 − 𝑥

100 separable!

∫ 1
300 − 𝑥 𝑑𝑥 = ∫ 1

100 𝑑𝑡 ⟹ − ln|300 − 𝑥| = 𝑡
100 + 𝐶

What is 𝑋(0)? Starts at 1000 L at 0.1 kg/L, so 𝑋(0) = 100 kg.
Find 𝐶:

− ln|300 − 100| = 𝐶 ⟹ 𝐶 = − ln(200)
So,

− ln|300 − 𝑥| = 𝑡
100 − ln(200)

Solve for 𝑥:
|300 − 𝑥| = 200𝑒−𝑡/100

but 300 − 𝑥 ⩾ 0 since 𝑋(0) = 100 and 𝑥 is increasing to 300. So, we get:

𝑋(𝑡) = 300 − 200𝑒−𝑡/100
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4.3 Linear First-Order Differential Equations
The general form for a linear first-order ODE is

𝐴(𝑥)𝑦′ + 𝐵(𝑥)𝑦 = 𝐶(𝑥)

where 𝐴(𝑥) ≢ 0. Or, dividing by 𝐴(𝑥), we can write it as:

𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥)

EXAMPLE 4.3.1: Preliminary Example

Solve 𝑑𝑦
𝑑𝑥 + 1

𝑥 𝑦 = 1.
Solution. The trick is: multiply by 𝑥!

𝑥 𝑑𝑦
𝑑𝑥 + 𝑦 = 𝑥

Notice that now the LHS is the derivative of 𝑥𝑦. So,
𝑑

𝑑𝑥(𝑥𝑦) = 𝑥

Now, integrate both sides!
𝑥𝑦 = ∫ 𝑥 𝑑𝑥 = 𝑥2

2 + 𝐶

Thus,
𝑦 = 𝑥

2 + 𝐶
𝑥

This is the general strategy: find a clever function to multiply the ODE by so that the LHS collapses into the
derivative of a product. Then, we just need to integrate both sides and solve for 𝑦.
Let’s find the useful function:
Say the ODE is

𝑑𝑦
𝑑𝑥 + 𝑃(𝑥)𝑦 = 𝑄(𝑥)

and the desired function is 𝜇(𝑥). Multiplying, we get

𝜇(𝑥) 𝑑𝑦
𝑑𝑥 + 𝜇(𝑥)𝑃(𝑥)𝑦 = 𝜇(𝑥)𝑄(𝑥)

We want the LHS to be
𝑑

𝑑𝑥 [𝜇(𝑥)𝑦] = 𝜇′(𝑥)𝑦 + 𝜇(𝑥) 𝑑𝑦
𝑑𝑥

Solving, we get:

𝜇(𝑥) 𝑑𝑦
𝑑𝑥 + 𝜇(𝑥)𝑃(𝑥)𝑦 = 𝜇(𝑥) 𝑑𝑦

𝑑𝑥 + 𝜇′(𝑥)𝑦
⟹ 𝜇(𝑥)𝑃 (𝑥)𝑦 = 𝜇′(𝑥)𝑦 should hold for all 𝑦
⟹ 𝜇(𝑥)𝑃(𝑥) = 𝜇′(𝑥)

or 𝜇(𝑥)𝑃(𝑥) = 𝑑𝜇
𝑑𝑥 which is separable!

∫ 1
𝜇 𝑑𝜇 = ∫ 𝑃(𝑥) 𝑑𝑥 ⟹ ln|𝜇| = ∫ 𝑃(𝑥) 𝑑𝑥
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Thus, the final form is
𝜇 = 𝑒∫ 𝑃(𝑥) 𝑑𝑥

REMARK 4.3.2
We can ignore the “+𝐶” and absolute values since we only need to find one 𝜇 that works, not all of
them.

So, we get an algorithm to solve a linear first-order ODE:
(I) Write it in the form

𝑑𝑦
𝑑𝑥 = 𝑃(𝑥)𝑦 = 𝑄(𝑥)

(II) Find
𝜇(𝑥) = 𝑒∫ 𝑃(𝑥) 𝑑𝑥

(III) Multiply the ODE by 𝜇, collapse LHS into a product rule.
(IV) Integrate both sides (add +𝐶) and solve for 𝑦.

EXAMPLE 4.3.3

Solve 𝑑𝑦
𝑑𝑥 + 2𝑥𝑦 = 𝑥.

Solution.
𝜇(𝑥) = 𝑒∫ 𝑃(𝑥) 𝑑𝑥 = 𝑒∫ 2𝑥 𝑑𝑥 = 𝑒𝑥2

Multiply by 𝑒𝑥2 :
𝑒𝑥2 𝑑𝑦

𝑑𝑥 + 2𝑥𝑒𝑥2𝑦 = 𝑥𝑒𝑥2

⟹ 𝑑
𝑑𝑥 [𝑒𝑥2𝑦] = 𝑥𝑒𝑥2

Integrate:

𝑒𝑥2𝑦 = ∫ 𝑥𝑒𝑥2 𝑑𝑥 𝑢 = 𝑥2 ⟺ 𝑑𝑢 = 2𝑥 𝑑𝑥

= 1
2 ∫ 𝑒𝑢 𝑑𝑢

= 1
2𝑒𝑢 + 𝐶

= 1
2𝑒𝑥2 + 𝐶

So,
𝑒𝑥2𝑦 = 1

2𝑒𝑥2 + 𝐶 ⟹ 𝑦 = 1
2 + 𝐶

𝑒𝑥2

EXAMPLE 4.3.4

Find a particular solution to 𝑥2 𝑑𝑦
𝑑𝑥 + 2𝑥𝑦 = 1 with 𝑦(1) = 0.

Solution. It’s not in the correct form! First, divide by 𝑥2:

𝑑𝑦
𝑑𝑥 + 2

𝑥𝑦 = 1
𝑥2
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Now,

𝜇(𝑥) = 𝑒∫ 2/𝑥 𝑑𝑥

= 𝑒2 ln|𝑥|

= 𝑒ln(𝑥)2

= 𝑥2

So multiply by 𝑥2, therefore our original ODE was actually what we wanted! Cool!

𝑥2 𝑑𝑦
𝑑𝑥 + 2𝑥𝑦 = 1 ⟹ 𝑑

𝑑𝑥 [𝑥2𝑦] = 1

Integrating gives

𝑥2𝑦 = 𝑥 + 𝐶

𝑦 = 1
𝑥 + 𝐶

𝑥2

Finally, we know 𝑦(1) = 0, so 0 = 1 + 𝐶 ⟹ 𝐶 = −1. Thus,

𝑦 = 1
𝑥 − 1

𝑥2

REMARK 4.3.5
There is a formula you can use as well! The solution to

𝑑𝑦
𝑑𝑥 + 𝑃(𝑥)𝑦 = 𝑄(𝑥)

is
𝑦 = 1

𝜇(𝑥)[∫ 𝜇(𝑥)𝑄(𝑥) 𝑑𝑥]

where
𝜇(𝑥) = 𝑒∫ 𝑃(𝑥) 𝑑𝑥

EXAMPLE 4.3.6

Solve 𝑥 𝑑𝑦
𝑑𝑥 + 2𝑥𝑒𝑥𝑦 = 𝑥𝑒𝑥.

Solution. First, divide by 𝑥:
𝑑𝑦
𝑑𝑥 + 2𝑒𝑥𝑦 = 𝑒𝑥

𝜇(𝑥) = 𝑒∫ 2𝑒𝑥 𝑑𝑥 = 𝑒2𝑒𝑥
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Now, using the formula:

𝑦 = 1
𝜇(𝑥) ∫ 𝜇(𝑥)𝑄(𝑥) 𝑑𝑥

= 1
𝑒2𝑒𝑥 [∫ 𝑒2𝑒𝑥𝑒𝑥 𝑑𝑥]

= 1
𝑒2𝑒𝑥 (𝑒2𝑢)

= 1
𝑒2𝑒𝑥 (𝑒2𝑢

2 + 𝐶)

= 1
𝑒2𝑒𝑥 (𝑒2𝑒𝑥

2 + 𝐶)

= 1
2 + 𝐶

𝑒2𝑒𝑥

There is an important result regarding these ODEs:
THEOREM 4.3.7
Assume 𝑃 and 𝑄 are continuous functions on an interval 𝐼 . Then, for each 𝑥0 ∈ 𝐼 and any 𝑦𝑜 ∈ R, the
IVP

𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥)
with 𝑦(𝑥0) = 𝑦0 has exactly one solution on 𝐼 .

REMARK 4.3.8
This is not true for other IVPs, some have no solutions, and some have more than one (some even have
∞-many!).

4.7 Newton’s Law of Cooling
The law states that an object’s temperature changes at a rate that is proportional to the difference between
the temperature of the object and the ambient temperature; that is, the temperature of the room, 𝑇room. The
formula is: 𝑑𝑇

𝑑𝑡 = −𝐾 (𝑇 − 𝑇room)

where
• 𝑑𝑇/𝑑𝑡 = rate of change of temperature
• −𝐾 = a constant
• 𝑇 = temperature at time 𝑡
• 𝑇room = temperature of surroundings (constant)

Q: Why is the constant negative?
A: If 𝑇 > 𝑇room, we would expect the object to be cooling, so 𝑑𝑇/𝑑𝑡 < 0. This means the coefficient needs to
be negative since 𝑇 − 𝑇room > 0. On the other hand, if 𝑇 < 𝑇room, then the object is heating up, so 𝑑𝑇/𝑑𝑡 > 0,
but 𝑇 − 𝑇room < 0, so again we need a negative constant.
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EXERCISE 4.7.1

The solution to this separable and linear ODE is 𝑇 (𝑡) = 𝐶𝑒−𝐾𝑡 + 𝑇room for 𝐶, 𝐾 ∈ R. Also, 𝐾 can be
determined with extra info.

Notice that lim
𝑡→∞

𝑇 (𝑡) = 𝑇room, as expected.

EXAMPLE 4.7.2

For 𝑑𝑇
𝑑𝑡 = −𝐾(𝑇 − 25), if the object was initially at 0∘𝐶, and after 10 minutes it was at 5∘𝐶, solve the

ODE.
Here, 𝑇 is in ∘𝐶 and 𝑡 is in minutes.
Solution. We know 𝑇 = 𝐶𝑒−𝐾𝑡 + 25, and 𝑇 (0) = 0, 𝑇 (10) = 5. First, 𝑇 (0) = 0 ⟹ 0 = 𝐶 + 25, so
𝐶 = −25. Therefore,

𝑇 = −25𝑒−𝐾𝑡 + 25
Next,

𝑇 (10) = 5

⟹ −20
−25 = 𝑒−10𝐾

⟹ 4
5 = 𝑒−10𝐾

⟹ 𝐾 = − 1
10 ln(4

5)

So,
𝑇 = −25𝑒1/10 ln(4/5)𝑡 + 25

4.8 Models of Population Growth
The two models we will examine are:
(I) Natural Growth (Exponential Growth)
(II) Logistic Growth

Natural Growth: It makes sense to assume that population grows at a rate proportional to the size of the
population. So, if 𝑃 = population, and 𝑡 = time, then

𝑑𝑃
𝑑𝑡 = 𝑘𝑃

where 𝑘 = constant, roughly equal to birth rate − death rate.
It’s separable! If 𝑝 ≢ 0:

∫ 1
𝑃 𝑑𝑃 = ∫ 𝑘 𝑑𝑡

⟹ ln|𝑃 | = 𝑘𝑡 + 𝐶
⟹ |𝑃| = 𝑒𝐶𝑒𝑘𝑡

⟹ 𝑃 = ±𝑒𝐶𝑒𝑘𝑡

Say ±𝑒𝐶 = 𝐴 ∈ R, then
𝑃 = 𝐴𝑒𝑘𝑡
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Note that 𝑃(0) = 𝐴𝑒0 = 𝐴, so 𝐴 = initial population. So, the solution to the IVP 𝑑𝑃/𝑑𝑡 = 𝑘𝑃 with 𝑃(0) = 𝑃0
is

𝑃 = 𝑃0𝑒𝑘𝑡

Is natural growth a good model? Say we have 1000 bacteria in a Petri dish, and we observe that 300 new
bacteria are formed after 1 hour. It is reasonable to assume that 2000 bacteria would spawn 600 in one hour,
isn’t it? Well, yes! That is, until they run out of food!
Shouldn’t we also take the environment into account? After a certain population, there won’t be enough
food/space to support any more growth. So it seems like natural growth is fine as long as there are lots of
resources (that is, for small populations). But once population nears its limit, it won’t be a good model any
more.
This limit is called the Carrying Capacity; that is, the maximum population that the environment can support
in the long run.
Denote the carrying capacity by 𝑀 .

DEFINITION 4.8.1
The logistical differential equation is

𝑑𝑃
𝑑𝑡 = 𝑘𝑃 (1 − 𝑃

𝑀 )

where 𝑘 = same constant as in natural growth.

REMARK 4.8.2
Sometimes written

𝑑𝑃
𝑑𝑡 = 𝑘𝑃(𝑀 − 𝑃)

but 𝐾 is different here.

Let’s examine some cases:
(I) If 𝑃 ≪ 𝑀 , then 1 − 𝑃/𝑀 ≈ 1, so 𝑑𝑃/𝑑𝑡 ≈ 𝑘𝑃 (natural growth!)
(II) If 𝑃 ≈ 𝑀 , then 1 − 𝑃/𝑀 ≈ 0, so 𝑑𝑃/𝑑𝑡 ≈ 0, which makes sense as population has reached its limit.
(III) If 𝑃 > 𝑀 , then 𝑑𝑃/𝑑𝑡 < 0, as expected. (The population shrinks as there are not enough resources).
So, this equation appears to be a good model! Let’s solve it:

𝑑𝑃
𝑑𝑡 = 𝑘𝑃 (1 − 𝑃

𝑀 )

with 𝑃(0) = 𝑃0. It’s separable!
∫ 1

𝑃(1 − 𝑃/𝑀) 𝑑𝑃 = ∫ 𝑘 𝑑𝑡 = 𝑘𝑡 + 𝐶

Use partial fractions! Notice
1

𝑃(1 − 𝑃/𝑀) = 𝑀
𝑃(𝑀 − 𝑃) = 1

𝑃 + 1
𝑀 − 𝑃
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So we get

∫ 1
𝑃 + 1

𝑀 − 𝑃 𝑑𝑃 = 𝑘𝑡 + 𝐶

⟹ ln|𝑃 | − ln|𝑀 − 𝑃| = 𝑘𝑡 + 𝐶

⟹ ln∣ 𝑃
𝑀 − 𝑃 ∣ = 𝑘𝑡 + 𝐶

⟹ ln∣𝑀 − 𝑃
𝑃 ∣ = −𝑘𝑡 − 𝐶

⟹ ∣𝑀 − 𝑃
𝑃 ∣ = 𝑒−𝑘𝑡−𝐶 = 𝑒−𝐶𝑒−𝑘𝑡

⟹ 𝑀 − 𝑃
𝑃 = ±𝑒−𝐶𝑒−𝑘𝑡 = 𝐴𝑒−𝑘𝑡 where 𝐴 = ±𝑒−𝐶

⟹ 𝑀
𝑃 − 1 = 𝐴𝑒−𝑘𝑡

⟹ 𝑃 = 𝑀
1 + 𝐴𝑒−𝑘𝑡

Next, use 𝑃(0) = 𝑃0 to get 𝐴:

𝑃0 = 𝑀
1 + 𝐴 ⟹ 1 + 𝐴 = 𝑀

𝑃0
⟹ 𝐴 = 𝑀 − 𝑃0

𝑃0

So, the solution to 𝑑𝑃
𝑑𝑡 = 𝑘𝑃 (1 − 𝑃

𝑀 ), 𝑃(0) = 𝑃0 is

𝑃 = 𝑀
1 + 𝐴𝑒−𝑘𝑡

where 𝐴 = 𝑀 − 𝑃0
𝑃0

.

EXAMPLE 4.8.3
Scientists took 100 wolves and let them go in a walled-off nature preserve. They estimated the carrying
capacity to be 1500, and after one year, there were 150 wolves.
Assuming logistic growth, find 𝑃(𝑡).
Solution. 𝑑𝑃

𝑑𝑡 = 𝑘𝑃 (1 − 𝑃
1500)

𝑃(0) = 100, and 𝑃(1) = 150. So,
𝑃 = 1500

1 + 𝐴𝑒−𝑘𝑡

with 𝐴 = (1500 − 100)/100 = 14. So,
𝑃 = 1500

1 + 14𝑒−𝑘𝑡

Lastly, use 𝑃(1) = 150 to get 𝑘.

150 = 1500
1 + 14𝑒−𝑘 ⟹ 1 + 14𝑒−𝑘 = 10 ⟹ 𝑒−𝑘 = 9

14 ⟹ −𝑘 = ln( 9
14)

So,
𝑃 = 1500

1 + 14𝑒ln(9/14)𝑡 = 1500
1 + 14 (9/14)𝑡
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Q: How long until there are 1000 wolves?
A: Find 𝑡:

1000 = 1500
1 + 14 (9/14)𝑡 ⟹ 3

2 = 1 + 14 ( 9
14)

𝑡
⟹ 1

28 = ( 9
14)

𝑡
⟹ 𝑡 = ln (1/28)

ln (9/14) ≈ 754 years

For Fun: There are other models too:
(I) Taking harvesting/hunting into account:

𝑑𝑃
𝑑𝑡 = 𝑘𝑃 (1 − 𝑃

𝑀 ) − 𝐶

where 𝐶 is the harvesting constant.
(II) If a population is too sparse, they may go extinct:

𝑑𝑃
𝑑𝑡 = 𝑘𝑃 (1 − 𝑃

𝑀 ) (1 − 𝑁
𝑃 )

where 𝑁 = minimum population to prevent extinction.



Chapter 5

Numerical Series

5.1 Introduction to Series
DEFINITION 5.1.1: Infinite series
Let {𝑎𝑛}∞

𝑛=1 be a sequence. An infinite series is an expression of the form

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯ =
∞

∑
𝑛=1

𝑎𝑛

This is a formal expression since we don’t know what this means numerically.

EXAMPLE 5.1.2: Infinite series

(i)
∞

∑
𝑛=1

1
𝑛 = 1 + 1

2 + 1
3 + 1

4 + ⋯

(ii)
∞

∑
𝑛=1

𝑛
𝑛 + 1 = 1

2 + 2
3 + 3

4 + ⋯

(iii)
∞

∑
𝑛=0

(−1)𝑛 = 1 − 1 + 1 − 1 + 1 − ⋯

Overall Goal: Determine of a given series of numbers converges or diverges.
Wait a minute! What do these words mean for an infinite sum?!
Well, we need to somehow convert a series to a sequence, which we know how to take a limit of!

DEFINITION 5.1.3: Sequence of Partial Sums

If
∞
∑
𝑛=1

𝑎𝑛 is a series, define its sequence of partial sums, {𝑆𝑛}, as 𝑆𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛

EXAMPLE 5.1.4

For
∞
∑
𝑛=1

1/𝑛, 𝑆1 = 1, 𝑆2 = 1 + 1/2 = 3/2, etc.

Now, we can define convergence/divergence.

56
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DEFINITION 5.1.5: Convergence, Divergence

A series
∞
∑
𝑛=1

𝑎𝑛 converges to 𝑆 ∈ R if lim
𝑛→∞

𝑆𝑛 = 𝑆. Here 𝑆 is called the sum of the series.
If {𝑆𝑛} diverges, we say the series diverges.

EXAMPLE 5.1.6

Using partial sums, determine if
∞

∑
𝑛=0

(−1)𝑛 converges or diverges.

Solution. Partial sums:
• 𝑆1 = 1
• 𝑆2 = 0
• 𝑆3 = 1
• 𝑆4 = 0
• etc.

Clearly, lim
𝑛→∞

𝑆𝑛 does not exist, so the series diverges.

EXAMPLE 5.1.7

Using partial sums, determine if
∞

∑
𝑛=1

[ 1
𝑛 − 1

𝑛 + 1] converges or diverges.

Solution. Partial sums:
• 𝑆1 = 1 − 1/2
• 𝑆2 = 1 − 1/2 + 1/2 − 1/3 = 1 − 1/3
• 𝑆3 = 1 − 1/2 + 1/2 − 1/3 − 1/3 − 1/4 = 1 − 1/4

There’s a pattern! 𝑆𝑛 = 1− 1
𝑛 + 1 , so lim

𝑛→∞
𝑆𝑛 = lim

𝑛→∞
[1 − 1

𝑛 + 1] = 1. Therefore, the series converges
to 1.

REMARK 5.1.8
The above series is called a Telescoping series.

Let’s examine a famous series: The Harmonic series.
∞

∑
𝑛=1

1
𝑛

Does it converge or diverge? Say it converges to 𝑆, so

𝑆 =
∞

∑
𝑛=1

1
𝑛

= (1 + 1
2) + (1

3 + 1
4) + (1

5 + 1
6) + (1

7 + 1
8) + ⋯

> (1
2 + 1

2) + (1
4 + 1

4) + (1
6 + 1

6) + (1
8 + 1

8) + ⋯

= 1 + 1
2 + 1

3 + 1
3 + 1

4 + ⋯
= 𝑆

So 𝑆 > 𝑆, a contradiction. Thus, the series diverges.
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REMARK 5.1.9
There are many proofs that the Harmonic series diverges, but this is my favourite. First published in
1976!

It turns out that finding sums of series is hard in general. The partial sum method rarely works, but it does
work for telescoping series, as we saw.
It also works for geometric series, let’s explore these now!

5.2 Geometric Series
DEFINITION 5.2.1: Geometric Series
A geometric series is a series of the form

∞
∑
𝑛=0

𝑟𝑛 = 1 + 𝑟 + 𝑟2 + ⋯ + 𝑟𝑛 + ⋯

for some 𝑟 ∈ R.

Let’s figure out where the series converges!

Case 1: 𝑟 = 1. Then the series is
∞
∑
𝑛=0

1 = 1 + 1 + 1 + 1 + ⋯. So 𝑆𝑛 = 𝑛, and lim
𝑛→∞

𝑆𝑛 = ∞, so the series
diverges in this case.

Case 2: 𝑟 = −1. Then the series is
∞
∑
𝑛=0

(−1)𝑛 which we know diverges from before.

Case 3: 𝑟 ≠ 1. Then
𝑆𝑛 = 1 + 𝑟 + 𝑟2 + ⋯ + 𝑟𝑛

and
𝑟𝑆𝑛 = 𝑟 + 𝑟2 + ⋯ + 𝑟𝑛+1

So, 𝑆𝑛 − 𝑟𝑆𝑛 = 1 − 𝑟𝑛+1, therefore
𝑆𝑛 = 1 − 𝑟𝑛+1

1 − 𝑟

Thus, lim
𝑛→∞

𝑆𝑛 = lim
𝑛→∞

1 − 𝑟𝑛+1

1 − 𝑟 = ( 1
1 − 𝑟) lim

𝑛→∞
[1 − 𝑟𝑛+1].

Clearly, lim
𝑛→∞

[1 − 𝑟𝑛+1] diverges if |𝑟| > 1, but if |𝑟| < 1 then lim
𝑛→∞

[1 − 𝑟𝑛+1] = 1. Thus,

∞
∑
𝑛=0

𝑟𝑛 = 1
1 − 𝑟

if |𝑟| < 1 and diverges otherwise.

5.3 Arithmetic of Series
Before we explore geometric series further, let’s look at some arithmetic properties of series.
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THEOREM 5.3.1

Suppose
∞
∑
𝑛=1

𝑎𝑛 = 𝐴 and
∞
∑
𝑛=1

𝑏𝑛 = 𝐵 and 𝑘 ∈ R.

(1)
∞
∑
𝑛=1

𝑘𝑎𝑛 = 𝑘𝐴

(2)
∞
∑
𝑛=1

𝑎𝑛 ± 𝑏𝑛 = 𝐴 ± 𝐵

Proof of 5.3.1
Follows from limit properties.

Also, if we know something about the tail of a series, then we can draw conclusions about the whole se-
ries!

THEOREM 5.3.2

If
∞
∑
𝑛=1

𝑎𝑛 converges, then
∞
∑
𝑛=𝑗

𝑎𝑛 also converges for each 𝑗 ⩾ 1.

If
∞
∑
𝑛=𝑗

𝑎𝑛 converges for some 𝑗, then
∞
∑
𝑛=1

𝑎𝑛 converges.

Proof of 5.3.2
∞

∑
𝑛=1

𝑎𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑗−1 +
∞

∑
𝑛=𝑗

𝑎𝑛

and 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑗−1 ∈ R, does not affect convergence. So, convergence only depends on the tail!
Changing finitely many terms will not affect convergence.

EXAMPLE 5.2.3
Determine whether the following series is convergent or divergent. If a series is convergent, find its
sum.
(i)

∞
∑
𝑛=0

(2
3)

𝑛

Solution. Converges to 1
1 − 2/3

= 3.

(ii)
∞

∑
𝑛=1

1
2𝑛

Solution. Converges to
∞

∑
𝑛=1

1
2𝑛 = 1

2
∞

∑
𝑛=1

1
2𝑛−1 = 1

2
∞

∑
𝑛=0

1
2𝑛 = 1

2
∞

∑
𝑛=0

(1
2)

𝑛
= 1

2 ( 1
1 − 1/2

) = 1.

(iii)
∞

∑
𝑛=0

3 (3
2)

𝑛

Solution. Diverges since |𝑟| = 3/2 > 1.
(iv)

∞
∑
𝑛=0

23𝑛3−2𝑛
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Solution. Converges to
∞

∑
𝑛=0

23𝑛3−2𝑛 =
∞

∑
𝑛=0

8𝑛

9𝑛 =
∞

∑
𝑛=0

(8
9)

𝑛
= 1

1 − 8/9
= 9.

(v)
∞

∑
𝑛=1

(25)8𝑛5−𝑛

Solution. Diverges since |𝑟| = 8/5 > 1.

Interesting Application: Decimals to Fractions
We can use geometric series to write an infinite repeating decimal as a fraction!

EXAMPLE 5.2.4

Use the geometric series to write the decimal 3.2131313 ⋯ = 3.213 as a fraction (it doesn’t need to be
in lowest terms).
Solution.

3.2131313 ⋯ = 3.2 + 13
103 + 13

105 + 13
107 + ⋯

= 32
10 + 13

103 (1 + 1
100 + 1

1002 + ⋯)

= 32
10 + 13

103

∞
∑
𝑛=0

( 1
100)

𝑛

= 32
10 + 13

1000 ( 1
1 − 1/100

)

= 3181
900

A Real-World Application
Suppose a spaceship is firing a laser beam at a planet with two layers of shields. These shields reflect one-
third of the beam, absorb five-ninths of the beam, and transmit one-ninth of the beam. If the beam has initial
intensity 𝐼 , what fraction is transmitted to the other side?
Solution. The total that gets through is:

𝐼
81 + 𝐼

9(81) + 𝐼
92(81) + ⋯ = 𝐼

81
∞

∑
𝑛=0

(1
9)

𝑛
= 𝐼

81 ( 1
1 − 1/9

) = 𝐼
81 (9

8) = 𝐼
72

Finding sums of series, in general, is hard. While we can do it for geometric series and telescoping series, we
can’t usually get a nice formula for 𝑆𝑛, the partial sums

Soon, we will prove that
∞

∑
𝑛=1

1
𝑛2 converges, but what is the sum?

First a few partial sums:
• 𝑆1 = 1
• 𝑆2 = 1 + 1/4 = 1.25
• 𝑆3 = 1 + 1/4 + 1/9 = 1.36111 …



CHAPTER 5. NUMERICAL SERIES 61

• 𝑆4 = 1.4236 …
Sum? 1.75? 2? 𝜋2/6? Yes!

∞
∑
𝑛=1

1
𝑛2 = 𝜋2

6

This is difficult to prove though!
So, from now on, we will focus on determining if a series converges or diverges, and not actually finding the
sum.
Let’s start developing some tests for convergence/divergence.

5.3 Divergence Test
First, let us prove a theorem:

THEOREM 5.3.1

If
∞
∑
𝑛=1

𝑎𝑛 converges, then lim
𝑛→∞

𝑎𝑛 = 0.

Proof of 5.3.1

Suppose
∞
∑
𝑛=1

𝑎𝑛 converges, say
∞
∑
𝑛=1

𝑎𝑛 = 𝑆.
Let {𝑆𝑛} be a sequence of partial sums, so 𝑆𝑛 = 𝑎1 +𝑎2 +⋯+𝑎𝑛 and lim

𝑛→∞
𝑆𝑛 = 𝑆. By sequence of limit

properties we get lim
𝑛→∞

𝑆𝑛−1 = 𝑆 too, and 𝑆𝑛 −𝑆𝑛−1 = 𝑎𝑛. Thus, lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑆𝑛 −𝑆𝑛−1 = 𝑆−𝑆 = 0.

The Divergence Test is the contrapositive of the above theorem:
THEOREM 5.3.2: Divergence Test

If lim
𝑛→∞

𝑎𝑛 ≠ 0 (or DNE), then
∞
∑
𝑛=1

𝑎𝑛 diverges.

REMARK 5.3.3
This test tells only ever tells us a series diverges, never that a series converges. So, if you are checking
∞
∑
𝑛=1

𝑎𝑛, if lim
𝑛→∞

𝑎𝑛

• = 0, get no info;
• ≠ 0, series diverges.

Q: Can you think of a series such that
∞

∑
𝑛=1

𝑎𝑛 diverges, even though lim
𝑛→∞

𝑎𝑛 = 0?

A: Yes! The Harmonic Series
∞

∑
𝑛=1

1
𝑛 .

So, be careful!
When to use the Divergence Test: First! It is a good idea to see if the test works before moving on to more
complicated tests!
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EXAMPLE 5.3.4
Use Divergence Test to draw a conclusion for the following series.
(i)

∞
∑
𝑛=1

𝑛
𝑛 + 1

Solution.
lim

𝑛→∞
𝑛

𝑛 + 1 = 1 ≠ 0, so the series diverges by the Divergence Test.

(ii)
∞

∑
𝑛=1

2𝑛 + 3𝑛

2𝑛

Solution. lim
𝑛→∞

2𝑛 + 3𝑛

2𝑛 = lim
𝑛→∞

[1 + (3
2)

𝑛
] = ∞ ≠ 0, so the series diverges by the Divergence

Test.
(iii)

∞
∑
𝑛=1

1
𝑛2

Solution. lim
𝑛→∞

1
𝑛2 = 0, so the Divergence Test fails!

(iv)
∞

∑
𝑛=1

arctan(𝑛)

Solution. lim
𝑛→∞

arctan(𝑛) = 𝜋
2 ≠ 0, so the series diverges by the Divergence Test.

5.5 Tests for Positive Series
DEFINITION 5.5.1: Positive

A series
∞
∑
𝑛=1

𝑎𝑛 is called positive if 𝑎𝑛 ⩾ 0 for all 𝑛.

There are a few tests that only work on positive series:
(I) Integral Test
(II) Comparison Test
(III) Limit Comparison Test
Let’s examine these now!

The Integral Test
THEOREM 5.5.2: Integral Test

Suppose 𝑓(𝑥) is continuous, positive, and decreasing for 𝑥 ∈ [1, ∞). Let 𝑎𝑛 = 𝑓(𝑛). Then,
∞
∑
𝑛=1

converges

if and only if ∫∞
1 𝑓(𝑥) 𝑑𝑥 converges.

REMARK 5.5.3
These three conditions don’t need to hold for all 𝑥 ⩾ 1, just eventually (for 𝑥 ⩾ 𝑚 for some 𝑚 ∈ R+),
which is the case most of the time when dealing with series and improper integrals!
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Proof of 5.5.2
We can cleverly look at two different approximations for the area under 𝑓(𝑥) (which is continuous,
positive, and decreasing). 𝑦 = 𝑓(𝑥), 𝑓(𝑛) = 𝑎𝑛:

(⋆) First figure:
𝑎2 + 𝑎3 + 𝑎4 + ⋯ + 𝑎𝑛 ⩽ ∫

𝑛

1
𝑓(𝑥) 𝑑𝑥

(⋆⋆) Second figure:
𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛−1 ⩾ ∫

𝑛

1
𝑓(𝑥) 𝑑𝑥

( ⟸ ) Suppose ∫∞
1 𝑓(𝑥) 𝑑𝑥 converges. (⋆) says

𝑛
∑
𝑘=2

𝑎𝑘 ⩽ ∫
𝑛

1
𝑓(𝑥) 𝑑𝑥 ⩽ ∫

∞

1
𝑓(𝑥) 𝑑𝑥

since 𝑓(𝑥) ⩾ 0. So,
𝑆𝑛 = 𝑎1 +

∞
∑
𝑘=2

𝑎𝑘 ⩽ 𝑎1 + ∫
∞

1
𝑓(𝑥) 𝑑𝑥

which is a constant, say 𝑀 . So, 0 ⩽ 𝑆𝑛 ⩽ 𝑀 for all 𝑛. Also, 𝑆𝑛+1 = 𝑆𝑛 + 𝑎𝑛+1 ⩾ 𝑆𝑛 since 𝑎𝑛+1 > 0.
So {𝑆𝑛} is a bounded monotonic sequence! Therefore, {𝑆𝑛} converges by MCT, which means

∞
∑
𝑛=1

𝑎𝑛
converges.
( ⟹ ) If ∫∞

1 𝑓(𝑥) 𝑑𝑥 diverges, then

lim
𝑛→∞

∫
𝑛

1
𝑓(𝑥) 𝑑𝑥 = ∞

and (⋆⋆) says

∫
𝑛

1
𝑓(𝑥) 𝑑𝑥 ⩽

𝑛−1
∑
𝑘=1

𝑎𝑘 = 𝑆𝑛−1

so lim
𝑛→∞

𝑆𝑛−1 = ∞, which means
∞
∑
𝑛=1

𝑎𝑛 diverges.

REMARK 5.5.4
When to use the Integral Test!

• When the series “looks like” it can be integrated; that is, when there are terms like ln(𝑛), 𝑒𝑛, etc.
• Compared to other tests, the Integral Test takes longer to use, it is better used as a last resort!

REMARK 5.5.5
Don’t forget to show the function is continuous, positive, and decreasing!
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EXAMPLE 5.5.6
Determine whether the following series is convergent or divergent.
(i)

∞
∑
𝑛=1

1
𝑛2

Solution. First, 𝑓(𝑥) = 1
𝑥2 is continuous, positive, and decreasing for 𝑥 ⩾ 1. So we can apply

the Integral Test. ∫
∞

1

1
𝑥2 𝑑𝑥 converges (𝑝-integral with 𝑝 = 2 > 1), so the series converges.

(ii)
∞

∑
𝑛=1

ln(𝑛)
𝑛

Solution. Does the Divergence Test work?

lim
𝑛→∞

ln(𝑛)
𝑛 = lim

𝑛→∞

1/𝑛
1 = 0 … no info

Let 𝑓(𝑥) = ln(𝑥)
𝑥 , 𝑓 is clearly continuous and positive for 𝑥 > 1, but is it decreasing? Let’s check!

𝑓 ′(𝑥) = 1 − ln(𝑥)
𝑥2 = 0

Before 𝑥 = 𝑒, 𝑓 ′ is positive and increasing.
After 𝑥 = 𝑒, 𝑓 ′ is negative and 𝑓 is decreasing.
So, it is decreasing eventually (for 𝑥 ⩾ 𝑒). So, we can use the Integral Test!

∫
∞

1

ln(𝑥)
𝑥 𝑑𝑥 = lim

𝑏→∞
[(ln(𝑥))2

2 ]
𝑏

1
= lim

𝑏→∞
(ln(𝑏))2

2 = ∞

So, the series diverges.

Q: For which 𝑝 ∈ R is
∞

∑
𝑛=1

1
𝑛𝑝 convergent?

A:
Proof of 5.5.7

Case 1: 𝑝 < 0. lim
𝑛→∞

1
𝑛𝑝 = ∞, therefore the series diverges by the Divergence Test.

Case 2: 𝑝 = 0. lim
𝑛→∞

1
𝑛0 = 1, therefore the series diverges by the Divergence Test.

Case 3: 𝑝 > 0. 𝑓(𝑥) = 1
𝑥𝑝 is continuous, positive, and decreasing for 𝑥 ⩾ 1. Also, we know ∫

∞

1

1
𝑥𝑝 𝑑𝑥

converges if and only if 𝑝 > 1.

THEOREM 5.5.7: 𝑝-Series Test

The series
∞

∑
𝑛=1

1
𝑛𝑝 converges if and only if 𝑝 > 1, and diverges if 𝑝 ⩽ 1.
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EXAMPLE 5.5.8: 𝑝-Series

Determine whether the following series is convergent or divergent.
•

∞
∑
𝑛=1

1
𝑛3/2

Solution. 𝑝-series with 𝑝 = 3/2 > 1, therefore the series converges.
•

∞
∑
𝑛=1

1√𝑛
Solution. 𝑝-series with 𝑝 = 1/2 < 1, therefore the series diverges.

REMARK 5.5.9
Note that the series does not converge to what the integral converges to! For example,

∞
∑
𝑛=1

1
𝑛2 = 𝜋2

6

but ∫
∞

1

1
𝑥2 𝑑𝑥 = 1. However, we can use the integral test to approximate the sum of a series!

DEFINITION 5.5.10: Remainder

The remainder is the error in using 𝑆𝑛 to approximate
∞
∑
𝑛=1

𝑎𝑛 = 𝑆, so

𝑅𝑛 = 𝑆 − 𝑆𝑛 = 𝑎𝑛+1 + 𝑎𝑛+2 + ⋯

If 𝑎𝑛 = 𝑓(𝑛) and 𝑓(𝑥) is continuous, positive, and decreasing, we know that

∫
∞

𝑛+1
𝑓(𝑥) 𝑑𝑥 ⩽ 𝑅𝑛 ⩽ ∫

∞

𝑛
𝑓(𝑥) 𝑑𝑥

from the proof of the Integral Test.

So we get an upper bound on the remainder!
EXAMPLE 5.5.11

Find an upper bound on the error if we use 𝑆10 to approximate
∞

∑
𝑛=1

1
𝑛2 .

Solution. 𝑅10 ⩽ ∫
∞

10

1
𝑥2 𝑑𝑥 = exercise = 1/10, so the error is at most 0.1.

EXAMPLE 5.5.12

How many terms are needed to approximate
∞

∑
𝑛=1

1
𝑛2 with an error of at most 0.001?

Solution. Need 𝑅𝑛 ⩽ 0.001, but we know 𝑅𝑛 ⩽ ∫
∞

𝑛

1
𝑥2 𝑑𝑥, so solve

∫
∞

𝑛

1
𝑥2 𝑑𝑥 ⩽ 0.001 ⟹ 1

𝑛 ⩽ 0.001 ⟹ 𝑛 ⩾ 1000
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We can improve our estimate, rather than just using 𝑆𝑛:

∫
∞

𝑛+1
𝑓(𝑥) 𝑑𝑥 ⩽ 𝑅𝑛 = 𝑆 − 𝑆𝑛 ⩽ ∫

∞

𝑛
𝑓(𝑥) 𝑑𝑥

so
𝑆𝑛 + ∫

∞

𝑛+1
𝑓(𝑥) 𝑑𝑥 ⩽ 𝑆 ⩽ 𝑆𝑛 + ∫

∞

𝑛
𝑓(𝑥) 𝑑𝑥

Back to the
∞

∑
𝑛=1

1
𝑛2 example, using 10 terms:

𝑆10 + ∫
∞

11

1
𝑥2 𝑑𝑥 ⩽ 𝑆 ⩽ 𝑆10 + ∫

∞

10

1
𝑥2 𝑑𝑥 ⟹ 𝑆10 + 1

11 ⩽ 𝑆 ⩽ 𝑆10 + 1
10 ⟹ 1.640677 ⩽ 𝑆 ⩽ 1.649768

Take midpoint: 𝑆 ≈ 1.64522. The error is actually ⩽ 0.0003.

The Comparison Test
Just like improper integrals, we can compare series!

THEOREM 5.5.13: Comparison Test

Assume 0 ⩽ 𝑎𝑛 ⩽ 𝑏𝑛 for 𝑛 ∈ N (or eventually)
(1) If

∞
∑
𝑛=1

𝑏𝑛 converges, then
∞
∑
𝑛=1

𝑎𝑛 converges too.

(2) If
∞
∑
𝑛=1

𝑎𝑛 diverges, then
∞
∑
𝑛=1

𝑏𝑛 diverges too.

Proof of 5.5.13
Notice that 2 is the contrapositive 1, so let’s prove 2.
Let {𝑆𝑎

𝑛} and {𝑆𝑏
𝑛} be the partial sum sequences for

∞
∑
𝑛=1

𝑎𝑛 and
∞
∑
𝑛=1

𝑏𝑛, respectively.

Suppose
∞
∑
𝑛=1

𝑎𝑛 diverges. Then, since 𝑎𝑛 ⩾ 0 for all 𝑛, lim
𝑛→∞

𝑆𝑎
𝑛 = ∞. But 𝑆𝑎

𝑛 ⩽ 𝑆𝑏
𝑛 for all 𝑛, so

lim
𝑛→∞

𝑆𝑏
𝑛 = ∞ too, which means

∞
∑
𝑛=1

𝑏𝑛 diverges.

EXAMPLE 5.5.14
Determine whether the following series is convergent or divergent.
(i)

∞
∑
𝑛=1

𝑛
𝑛3 + 7

Solution. Note that 0 ⩽ 𝑛
𝑛3 + 7 ⩽ 𝑛

𝑛3 = 1
𝑛2 and

∞
∑
𝑛=1

1
𝑛2 converges (𝑝-series with 𝑝 = 2 > 1). So,

the given series converges by comparison.
(ii)

∞
∑
𝑛=2

𝑛 + 7
𝑛2 − 1

Solution. Note that 𝑛 + 7
𝑛2 − 1 ⩾ 𝑛

𝑛2 − 1 ⩾ 𝑛
𝑛2 = 1

𝑛 ⩾ 0 and
∞

∑
𝑛=2

1
𝑛 diverges (Harmonic Series). So,

the given series diverges by comparison.
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(iii)
∞

∑
𝑛=1

𝑛3 − 𝑛
𝑛4 + 7

Solution. Note that 𝑛3 − 𝑛
𝑛4 + 7 ⩽ 𝑛3

𝑛4 + 7 ⩽ 𝑛3

𝑛4 = 1
𝑛 , but

∞
∑
𝑛=1

1
𝑛 diverges, so comparison fails.

But it “looks like”
∞

∑
𝑛=1

1
𝑛 , which diverges! The inequalities were just pointing the wrong way! If

only there was a test that didn’t require us to use inequalities but still allowed us to compare two
series…Well good news!

The Limit Comparison Test (LCT)
THEOREM 5.5.15: LCT
If 0 ⩽ 𝑎𝑛 and 0 < 𝑏𝑛 for 𝑛 ∈ N, and

lim
𝑛→∞

𝑎𝑛
𝑏𝑛

= 𝐿

with 𝐿 ≠ 0 and 𝐿 < ∞, then either both
∞
∑
𝑛=1

𝑎𝑛 and
∞
∑
𝑛=1

𝑏𝑛 converge or both diverge.

Proof of 5.5.15

Suppose lim
𝑛→∞

𝑎𝑛
𝑏𝑛

= 𝐿, 0 < 𝐿 < ∞. Then, we can find positive numbers 𝑚 and 𝑀 so that 𝑚 < 𝐿 < 𝑀 .

But since lim
𝑛→∞

𝑎𝑛
𝑏𝑛

= 𝐿, if 𝑛 is large enough we get 𝑚 < 𝑎𝑛
𝑏𝑛

< 𝑀 → 𝑚𝑏𝑛 < 𝑎𝑛 < 𝑀𝑏𝑛
(⋆)

. So, if one

series converges/diverges we can use (⋆) and comparison to show the other converges/diverges too.

Cool! We don’t need to worry about inequalities!
REMARK 5.5.16
When to use LCT:

• Series like ∑ powers of 𝑛
powers of 𝑛

• “Almost” geometric series
Strategy: Pick the dominant terms (as 𝑛 → ∞) in the numerator and denominator to compare to.

EXAMPLE 5.5.17

(i)
∞

∑
𝑛=1

𝑛3 − 𝑛
𝑛4 + 7

Solution. Use LCT with
∞

∑
𝑛=1

1
𝑛 :

lim
𝑛→∞

(𝑛3 − 𝑛
𝑛4 + 7 )

( 1
𝑛)

= lim
𝑛→∞

𝑛4 − 𝑛2

𝑛4 + 7 = 1

so since
∞

∑
𝑛=1

1
𝑛 diverges (Harmonic Series), so does the given series.
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(ii)
∞

∑
𝑛=1

2𝑛 − 1
3𝑛 + 𝑛

Solution. This looks like an “almost” geometric series. Use LCT with
∞

∑
𝑛=1

2𝑛

3𝑛 :

lim
𝑛→∞

( 2𝑛 − 1
3𝑛 + 𝑛)

(2𝑛

3𝑛 )
= lim

𝑛→∞
6𝑛 − 3𝑛

6𝑛 + 𝑛2𝑛 = lim
𝑛→∞

1 − 1
2𝑛

1 + 𝑛
3𝑛

= 1

so since
∞

∑
𝑛=1

2𝑛

3𝑛 converges geometric series (|𝑟| = 2/3 < 1), so does the given series.

(iii)
∞

∑
𝑛=1

√
𝑛2 + 5𝑛 + 3

𝑛7/4 + 3𝑛 − 1

Solution. Use LCT with
∞

∑
𝑛=1

1
𝑛3/4

:

lim
𝑛→∞

(
√

𝑛2 + 5𝑛 + 3
𝑛7/4 + 3𝑛 − 1 )

( 1
𝑛3/4

)
= exercise = 1

so since
∞

∑
𝑛=1

1/𝑛3/4 diverges (𝑝-series with 𝑝 = 3/4 ⩽ 1), so does the given series.

We can also extend the LCT to discuss what happens if 𝐿 = 0 or 𝐿 = ∞:
THEOREM 5.5.18: LCT
If 𝑎𝑛 ⩾ 0 and 𝑏𝑛 > 0 for 𝑛 ∈ N (or eventually) and lim

𝑛→∞
𝑎𝑛/𝑏𝑛 = 𝐿, then:

(1) If 0 < 𝐿 < ∞, then
∞
∑
𝑛=1

𝑎𝑛 converges if and only if
∞
∑
𝑛=1

𝑏𝑛 converges.

(2) If 𝐿 = 0 and
∞
∑
𝑛=1

𝑏𝑛 converges, then
∞
∑
𝑛=1

𝑎𝑛 converges.

(3) If 𝐿 = ∞ and
∞
∑
𝑛=1

𝑎𝑛 converges, then
∞
∑
𝑛=1

𝑏𝑛 converges.

Proofs of (2) and (3) are similar to (1), exercises.
REMARK 5.5.19
Make sure if you use (2) or (3), you draw the correct conclusion.

EXAMPLE 5.5.20

Determine if
∞
∑
𝑛=2

[ln(𝑛)]3√𝑛 is convergent or divergent.
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Solution. LCT with
∞

∑
𝑛=1

1√𝑛 :

lim
𝑛→∞

((ln(𝑛))3
√𝑛 )

( 1√𝑛)
= lim

𝑛→∞
(ln(𝑛))3 = ∞,

so since
∞

∑
𝑛=2

1√𝑛 diverges (𝑝-series with 𝑝 = 1/2 ⩽ 1), so does the given series.

5.7 Alternating Series
So far, we have only developed tests for positive series. Before we look at how to extend them to all series,
let’s examine alternating series.

DEFINITION 5.7.1: Alternating series

A series is alternating if its terms are alternately positive or negative.

EXAMPLE 5.7.2: Alternating series

(i) 1 − 1/2 + 1/3 − 1/4 + ⋯ =
∞
∑
𝑛=1

(−1)𝑛+1

𝑛 is alternating.
(ii) 1 − 1/2 − 1/3 + 1/4 + 1

5 − ⋯ is not alternating.

REMARK 5.7.3
Look for (−1)𝑛, cos(𝑛𝜋), etc.

THEOREM 5.7.4: Alternating Series Test (AST)

Suppose 𝑎𝑛 > 0 for all 𝑛. Consider the alternating series
∞
∑
𝑛=1

(−1)𝑛+1𝑎𝑛. If:
(1) {𝑎𝑛} is non-increasing (eventually): 𝑎𝑛 ⩾ 𝑎𝑛+1 and
(2) lim

𝑛→∞
𝑎𝑛 = 0

Then,
∞
∑
𝑛=1

(−1)𝑛+1𝑎𝑛 converges.

Proof of 5.7.4
We will prove {𝑆𝑛} converges by proving {𝑆2𝑛} and {𝑆2𝑛+1} both converge to the same limit.
Suppose {𝑎𝑛} is decreasing and lim

𝑛→∞
𝑎𝑛 = 0.

Even Partial Sums:
• 𝑆2 = 𝑎1 − 𝑎2 > 0
• 𝑆4 = (𝑎1 − 𝑎2)

>0
+ (𝑎3 − 𝑎4)

>0
> 𝑆2

• 𝑆6 = 𝑆4 + (𝑎5 − 𝑎6)
>0

> 𝑆4

• etc.
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In general,
𝑆2𝑛 = 𝑆2𝑛−2 + (𝑎2𝑛−1 − 𝑎2𝑛) > 𝑆2𝑛−2

so 0 < 𝑆2 < 𝑆4 < ⋯ < 𝑆2𝑛 < ⋯, so {𝑆2𝑛} is increasing. Also,

𝑆2𝑛 = 𝑎1 − (𝑎2 − 𝑎3)
>0

− (𝑎4 − 𝑎5)
>0

− ⋯ − (𝑎2𝑛−2 − 𝑎2𝑛−1)
>0

− 𝑎2𝑛
>0

so 𝑆2𝑛 ⩽ 𝑎1. Since {𝑆2𝑛} is increasing and bounded above, it converges by MCT. Say lim
𝑛→∞

𝑆2𝑛 = 𝑆.
Odd Partial Sums: lim

𝑛→∞
𝑆2𝑛+1 = lim

𝑛→∞
𝑆2𝑛 + 𝑎2𝑛+1 = 𝑆 + 0 = 𝑆. So lim

𝑛→∞
𝑆2𝑛 = 𝑆 = lim

𝑛→∞
𝑆2𝑛+1, which

means lim
𝑛→∞

𝑆2𝑛 = 𝑆. Therefore, the series converges.

Picture of what’s going on:

2 4 60

2

EXAMPLE 5.7.5
Determine whether the following series is convergent or divergent.
(i)

∞
∑
𝑛=1

(−1)𝑛+1

𝑛 (Alternating Harmonic Series)

Solution. First, 1
𝑛 + 1 < 1

𝑛 , so { 1
𝑛} is decreasing. Also, lim

𝑛→∞
1
𝑛 = 0. So, the Alternating

Harmonic Series converges by AST.
(ii)

∞
∑
𝑛=2

(−1)𝑛

𝑛 ln(𝑛)

Solution. First, 1
(𝑛 + 1) ln(𝑛 + 1) ⩽ 1

𝑛 ln(𝑛) , so { 1
𝑛 ln(𝑛)} is decreasing. Also, lim

𝑛→∞
1

𝑛 ln(𝑛) = 0.
So, the series converges by AST.

Q: What if we are dealing with alternating series, but it doesn’t satisfy the hypotheses of the AST?! It’s our
only test!
A: If an alternating series fails the AST, it means you forgot to check the Divergence Test!
See the following example.
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EXAMPLE 5.7.6: You forgot to check the Divergence Test!

Is
∞

∑
𝑛=1

(−1)𝑛𝑒2𝑛

𝑒2𝑛 + 1 convergent or divergent?

Solution. Using the Divergence Test:

lim
𝑛→∞

(−1)𝑛𝑒2𝑛

𝑒2𝑛 + 1 = lim
𝑛→∞

(−1)𝑛

1 + 1/𝑒2𝑛

does not exist. Thus, the series diverges.

Estimating Sums of Alternating Series

Suppose we have an alternating series
∞
∑
𝑛=1

(−1)𝑛+1𝑎𝑛 that converges by AST.

We know from the proof that the odd partial sums approach the actual sum from above, while the even partial
sums approach from below.
This means the actual sum lies between any two consecutive partial sums, so the error satisfies

|𝑅𝑛| = |𝑆 − 𝑆𝑛| ⩽ |𝑆𝑛+1 − 𝑆𝑛| = |±𝑎𝑛+1| = 𝑎𝑛+1

which is the next term! So, |𝑅𝑛| ⩽ 𝑎𝑛+1 .

EXAMPLE 5.7.7

Find an upper bound on the remainder if we use 𝑆10 to approximate
∞

∑
𝑛=1

(−1)𝑛+1

𝑛 .

Solution. |𝑅𝑛| ⩽ 𝑎𝑛+1, so |𝑅10| ⩽ 𝑎11 = 1/11.

EXAMPLE 5.7.8

How many terms are needed to approximate
∞

∑
𝑛=1

(−1)𝑛

10𝑛𝑛! with an error of at most 0.000005?

Solution. The series converges by AST (exercise)

|𝑅𝑛| ⩽ 𝑎𝑛+1 = 1
10𝑛+1(𝑛 + 1)! ,

so we want 𝑎𝑛+1 ⩽ 0.000005. Guess and check (since factorials don’t have inverses).
• 𝑛 = 3: 1

104(4)! ≈ 0.000004 (good!)

• 𝑛 = 2: 1
103(3)! ≈ 0.0016 (bad!)

So 𝑛 = 3 works (3 terms).

Q: Is the 121st partial sum of
∞

∑
𝑛=1

(−1)𝑛+13𝑛

(𝑛)4𝑛 an overestimate or underestimate of the actual sum?

A: First term is positive, so the odd partial sums are above the sum while the even partial sums are below. So
𝑆121 is an overestimate!
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REMARK 5.7.9
If the first term is negative, then the odd partial sums are underestimates while the even partial sums
are overestimates.

5.8 Absolute versus Conditional Convergence
So far we’ve examined tests for positive series, and a test for alternating series, but what can we do about the
series that have non-alternating assortment of positive and negative terms? Is there a way to make our tests
for positive series work in this case too? Yes! Just like for improper integrals, we use absolute values and
discuss absolute convergence!

DEFINITION 5.8.1: Absolutely convergent

A series
∞
∑
𝑛=1

𝑎𝑛 is absolutely convergent if
∞
∑
𝑛=1

|𝑎𝑛| converges.

REMARK 5.8.2
Note that if a series only has positive terms then absolute convergence is the same as convergence
because

∞
∑
𝑛=1

|𝑎𝑛| =
∞
∑
𝑛=1

𝑎𝑛.

EXAMPLE 5.8.3

(i) Is
∞

∑
𝑛=1

(−1)𝑛

𝑛2 absolutely convergent?

Solution. Yes,
∞

∑
𝑛=1

∣ (−1)𝑛

𝑛2 ∣ =
∞

∑
𝑛=1

1
𝑛2 converges. (𝑝-series, 𝑝 = 2 > 1)

(ii) Is
∞

∑
𝑛=1

(−1)𝑛+1

𝑛 absolutely convergent?

Solution. No,
∞

∑
𝑛=1

∣ (−1)𝑛+1

𝑛 ∣ =
∞

∑
𝑛=1

1
𝑛 diverges. (Harmonic Series)

REMARK 5.8.4
Don’t say “absolutely divergent,” that makes it sound worse than it is!

We know
∞

∑
𝑛=1

(−1)𝑛+1

𝑛 converges by AST, and we have a name for the series that behave this way:

DEFINITION 5.8.5: Conditionally convergent

A series is conditionally convergent if it is convergent, but not absolutely convergent.

We also have an analogue of the ACT for series:
THEOREM 5.8.6: ACT

If
∞
∑
𝑛=1

|𝑎𝑛| converges, then
∞
∑
𝑛=1

𝑎𝑛 converges.
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REMARK 5.8.7

Note that unless 𝑎𝑛 ⩾ 0 for all 𝑛,
∞
∑
𝑛=1

|𝑎𝑛| and
∞
∑
𝑛=1

𝑎𝑛 will converge to different values!

Proof of 5.8.6

(Similar to the proof of ACT for integrals). Suppose
∞
∑
𝑛=1

|𝑎𝑛| converges. Note that 0 ⩽ 𝑎𝑛 + |𝑎𝑛| ⩽ 2|𝑎𝑛|.

Since
∞
∑
𝑛=1

|𝑎𝑛| converges,
∞
∑
𝑛=1

2|𝑎𝑛| converges, so by comparison
∞
∑
𝑛=1

(𝑎𝑛 + |𝑎𝑛|) converges, too. But then

∞
∑
𝑛=1

𝑎𝑛 =
∞

∑
𝑛=1

[(𝑎𝑛 + |𝑎𝑛|) − |𝑎𝑛|] =
∞

∑
𝑛=1

(𝑎𝑛 + |𝑎𝑛|)
converges

−
∞

∑
𝑛=1

|𝑎𝑛|
converges

So
∞
∑
𝑛=1

𝑎𝑛 converges.

Cool! So, to prove a series converges we can prove it is absolutely convergent instead, which allows us to use
tests like Integral/Comparison/Limit comparison!

EXAMPLE 5.8.8

Is
∞

∑
𝑛=1

sin(𝑛3)
𝑛3 convergent?

Solution. Let’s check absolute convergence!
∞

∑
𝑛=1

∣sin(𝑛3)
𝑛3 ∣: We know 0 ⩽ ∣ sin(𝑛3)

𝑛3 ∣ ⩽ 1
𝑛3 and

∞
∑
𝑛=1

1
𝑛3

converges (𝑝-series, 𝑝 = 3 > 1), so
∞

∑
𝑛=1

∣sin(𝑛3)
𝑛3 ∣ converges by comparison. So, the given series con-

verges by ACT.

A typical question will ask “are the following series absolutely convergent, conditionally convergent, or diver-
gent,” then you should:

• Step 1: Try the Divergence Test
• Step 2: Check absolute convergence with old tests for positive series.
• Step 3: Check conditional convergence with AST.
REMARK 5.8.9
Doing Step 2 before Step 3 is a good idea since if the series converges absolutely you’re done, while if
it converges by AST you still need to check absolute convergence.

EXAMPLE 5.8.10
Do the following series converge absolutely, conditionally, or diverge?
(i)

∞
∑
𝑛=1

(−1)𝑛4𝑛

3𝑛

Solution. Divergence Test: lim
𝑛→∞

(−1)𝑛4𝑛

3𝑛 does not exist, so the series diverges.
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(ii)
∞

∑
𝑛=1

(−1)𝑛√
𝑛2 + 𝑛

𝑛3/2

Solution. Note the Divergence Test fails. Check absolute convergence:
∞

∑
𝑛=1

(−1)𝑛√
𝑛2 + 𝑛

𝑛3/2
=

∞
∑
𝑛=1

√
𝑛2 + 𝑛
𝑛3/2

LCT with
∞

∑
𝑛=1

1√𝑛 :

lim
𝑛→∞

(
√

𝑛2 + 𝑛
𝑛3/2

)

( 1√𝑛)
= lim

𝑛→∞

√
𝑛2 + 𝑛

𝑛 = lim
𝑛→∞

√1 + 1
𝑛 = 1

So since
∞

∑
𝑛=1

1√𝑛 diverges, so does the given series, so our series is not absolutely convergent. Let’s

check AST: Clearly lim
𝑛→∞

√
𝑛2 + 𝑛
𝑛3/2

= 0, but is the sequence decreasing? We could use derivatives
to check, but instead let’s try it directly:

√(𝑛 + 1)2 + (𝑛 + 1)
(𝑛 + 1)3/2

<
√

𝑛2 + 𝑛
𝑛3/2

⟺ 𝑛3/2√𝑛2 + 2𝑛 + 1 + 𝑛 + 1 < √𝑛2 + 𝑛(𝑛 + 1)3/2

⟺ 𝑛3(𝑛2 + 3𝑛 + 2) < (𝑛2 + 𝑛)(𝑛 + 1)3

⟺ 𝑛5 + 3𝑛4 + 2𝑛3 < (𝑛2 + 𝑛)(𝑛3 + 3𝑛2 + 3𝑛 + 1)
⟺ 2𝑛3 < 3𝑛3 + 𝑛2 + 𝑛4 + 3𝑛3 + 3𝑛2 + 𝑛
⟺ 0 < 𝑛4 + 4𝑛3 + 4𝑛2 + 𝑛

which is true for all 𝑛 ⩾ 1. So the sequence is decreasing, which means the series converges by
AST. Thus, our given series is conditionally convergent.

(iii)
∞

∑
𝑛=1

𝑒𝑛

𝜋𝑛

Solution. Note the Divergence Test fails. Wait a minute! This series only has positive terms! So
absolute convergence = convergence! Also, it’s a geometric series (|𝑟| = 𝑒/𝜋 < 1), so the series
converges absolutely.

Aside on Rearranging The Order of a Series
We have been discussing “sums” of infinite series, but it turns out that these can behave very strangely!
Q: Can we rearrange the order in which we sum the series?

A: Sometimes! If
∞
∑
𝑛=1

𝑎𝑛 is absolutely convergent with sum 𝑆, then any rearrangement of the terms will also
have the sum 𝑆.
What about conditional convergence? Let’s see! Soon, we will prove that the sum of the alternating Harmonic
Series is ln(2).
(⋆):

1 − 1
2 + 1

3 − 1
4 + 1

5 − ⋯ = ln(2)
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Divide by 2:
1
2 − 1

4 + 1
6 − 1

8 + 1
10 − ⋯ = 1

2 ln(2)

(⋆⋆) Add in some 0’s:
0 + 1

2 + 0 − 1
4 + 0 + 1

6 + 0 − 1
8 + ⋯ = 1

2 ln(2)
(⋆ ⋆ ⋆) Computing (⋆) + (⋆⋆):

1 + 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + ⋯ = 3

2 ln(2)
But (⋆ ⋆ ⋆) is a rearrangement of (⋆). So changing the order changes the sum!

In fact, Riemann proved that if
∞
∑
𝑛=1

𝑎𝑛 is conditionally convergent, then by rearranging we can make it add
up to any real number (or ±∞)!

5.9 Ratio and Root Tests
We have two more tests to examine!

THEOREM 5.9.1: Ratio Test

Let
∞
∑
𝑛=1

𝑎𝑛 be a series, and assume lim
𝑛→∞

∣𝑎𝑛+1
𝑎𝑛

∣ = 𝐿, with 𝐿 ∈ R or 𝐿 = ∞.

(1) If 𝐿 < 1, then
∞
∑
𝑛=1

𝑎𝑛 is absolutely convergent.

(2) If 𝐿 > 1 (or 𝐿 = ∞), then
∞
∑
𝑛=1

𝑎𝑛 diverges.
(3) If 𝐿 = 1, we get no info.

Proof of 5.9.1
Proof of (1) Suppose 𝐿 < 1 (Idea: compare to a geometric series!) Since 𝐿 < 1, we can pick 𝑟 ∈ Rwith
𝐿 < 𝑟 < 1. Since lim

𝑛→∞
∣𝑎𝑛+1

𝑎𝑛
∣ = 𝐿 < 𝑟, for large enough 𝑛, say 𝑛 ⩾ 𝑁 , ∣𝑎𝑛+1

𝑎𝑛
∣ < 𝑟, or |𝑎𝑛+1| < 𝑟|𝑎𝑛|.

So

|𝑎𝑁+1| < 𝑟|𝑎𝑁 |
|𝑎𝑁+2| < 𝑟|𝑎𝑁+1| < 𝑟2|𝑎𝑁 |
|𝑎𝑁+3| < ⋯ 𝑟3|𝑎𝑁 |

(⋆) In general: |𝑎𝑁+𝐾| < ⋯ < 𝑟𝑘|𝑎𝑁 |.
Furthermore,

∞
∑
𝑛=1

|𝑎𝑁 |𝑟𝑛 converges (geometric series, 𝑟 < 1). So, by (⋆) and comparison,
∞
∑

𝑛=𝑁+1
|𝑎𝑛|

converges, but then so does
∞
∑
𝑛=1

|𝑎𝑛|. Thus,
∞
∑
𝑛=1

𝑎𝑛 converges absolutely.

Proof of (2) Suppose lim
𝑛→∞

∣𝑎𝑛+1
𝑎𝑛

∣ = 𝐿 > 1 (or 𝐿 = ∞). Then eventually ∣𝑎𝑛+1
𝑎𝑛

∣ > 1, or |𝑎𝑛+1| > |𝑎𝑛| >
0. Hence, the size of the terms is increasing eventually, so lim

𝑛→∞
𝑎𝑛 ≠ 0. Therefore, the series diverges

by the Divergence Test.
Proof of (3) Consider

∞
∑
𝑛=1

1
𝑛 and

∞
∑
𝑛=1

1
𝑛2 . In both cases 𝐿 = 1, but one converges and the one diverges.

So, if 𝐿 = 1 we get no info.
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REMARK 5.9.2
When to use:

• Factorials! (see what I did there?!)
• Also works on some “almost” geometric series

If you see a factorial (after simplifying), use the Ratio Test first! Even before the Divergence Test.

EXAMPLE 5.9.3
Determine whether the following series are absolutely convergent, conditionally convergent, or diver-
gent.
(i)

∞
∑
𝑛=1

3𝑛

𝑛!
Solution. Ratio Test:

lim
𝑛→∞

∣𝑎𝑛+1
𝑎𝑛

∣ = lim
𝑛→∞

3𝑛+1

(𝑛 + 1)! ( 𝑛!
3𝑛 ) = lim

𝑛→∞
3

𝑛 + 1 = 0 < 1

So the given series converges absolutely.
(ii)

∞
∑
𝑛=1

(−1)𝑛9𝑛

𝑛2𝑛

Solution. Ratio Test:

lim
𝑛→∞

∣𝑎𝑛+1
𝑎𝑛

∣ = lim
𝑛→∞

∣ (−1)𝑛+19𝑛+1

(𝑛 + 1)2𝑛+1 [ 𝑛2𝑛

(−1)𝑛9𝑛 ]∣ = lim
𝑛→∞

(9) (1
2) ( 𝑛

𝑛 + 1) = 9
2 > 1

So, the series diverges.
(iii)

∞
∑
𝑛=1

𝑛𝑛

𝑛!
Solution. Ratio Test:

lim
𝑛→∞

∣ (𝑛 + 1)𝑛+1

(𝑛 + 1)! ( 𝑛!
𝑛𝑛 )∣ = lim

𝑛→∞
(𝑛 + 1)𝑛+1

(𝑛 + 1)𝑛𝑛 = lim
𝑛→∞

(𝑛 + 1)𝑛

𝑛𝑛 = lim
𝑛→∞

(𝑛 + 1
𝑛 )

𝑛
= 𝑒 > 1

So, the series diverges. This shows 𝑛𝑛 ≫ 𝑛! as 𝑛 → ∞.
(iv)

∞
∑
𝑛=1

𝑛2 + 3𝑛
5𝑛

Solution. “Almost geometric,” Ratio Test:

lim
𝑛→∞

∣ (𝑛 + 1)2 + 3(𝑛 + 1)
5𝑛+1 ( 5𝑛

𝑛2 + 3𝑛)∣ = lim
𝑛→∞

1
5 (𝑛2 + 2𝑛 + 1 + 3𝑛 + 3

𝑛2 + 3𝑛 ) = 1
5 < 1

So, the series converges absolutely.
(v)

∞
∑
𝑛=1

𝑛2 + 2𝑛 + 1
3𝑛4 + 4

Solution. Should use LCT (exercise), but what if we use the Ratio Test?

lim
𝑛→∞

∣ (𝑛 + 1)2 + 2(𝑛 + 1) + 1
3(𝑛 + 1)4 + 4 ( 3𝑛4 + 4

𝑛2 + 2𝑛 + 1)∣

= lim
𝑛→∞

[(𝑛 + 1)2 + 2(𝑛 + 1) + 1
𝑛2 + 2𝑛 + 1 ( 3𝑛4 + 4

3(𝑛 + 1)4 + 4)] = 1

Ratio Test fails! We have one more test to examine: the Root Test!

We have one more test to examine: the Root Test!
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THEOREM 5.9.4: Root Test

Let
∞
∑
𝑛=1

𝑎𝑛 be a series and assume lim
𝑛→∞

𝑛√|𝑎𝑛| = 𝐿 ∈ R or 𝐿 = ∞.

(1) If 𝐿 < 1, then
∞
∑
𝑛=1

𝑎𝑛 converges absolutely.

(2) If 𝐿 > 1, then
∞
∑
𝑛=1

𝑎𝑛 diverges.
(3) If 𝐿 = 1, then we get no info.

The proof is similar to the Ratio Test proof.
REMARK 5.9.5
When to use:

• When all the terms of a series are raised to the power of 𝑛
Warning:

• If the Ratio Test fails (𝐿 = 1), then the Root Test will also fail and vice versa.

EXAMPLE 5.9.6
∞

∑
𝑛=1

( 𝑛 + 1
3𝑛 + 7)

𝑛

Solution. Root Test:
lim

𝑛→∞
∣( 𝑛 + 1

3𝑛 + 7)
𝑛
∣

1/𝑛

= lim
𝑛→∞

𝑛 + 1
3𝑛 + 7 = 1

3 < 1

So the series converges absolutely.

To help us predict if a series will converge or diverge, let’s examine the relative sizes of common func-
tions:

[ln(𝑛)]𝑝 ≪ 𝑛𝑝 ≪ 𝑥𝑛 ≪ 𝑛! ≪ 𝑛𝑛

for |𝑥| > 1.
We have seen most of these already, but let’s prove one more:

THEOREM 5.9.7
For any 𝑥 ∈ R,

lim
𝑛→∞

𝑥𝑛

𝑛! = 0

Proof of 5.9.7

Using the Ratio Test, we can show that
∞

∑
𝑛=1

𝑥𝑛

𝑛! converges for any 𝑥 ∈ R. Therefore, by the Divergence

Test, lim
𝑛→∞

𝑥𝑛

𝑛! = 0.

This shows that 𝑥𝑛 ≪ 𝑛!.

Series Test Recap
• Sums of Geometric and Telescoping Series

– Try to spot these series.
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– If the question says “find the sum,” it’s likely one of these.
• Divergence Test (Any Series)

– Try this first, unless there is a factorial.
• Integral Test (Positive Series)

– Last resort when all else fails.
– Don’t forget continuous, positive, and decreasing.

• 𝑝-series (∑ 1
𝑛𝑝 )

– Good for Comparison and Limit Comparison Test.
• Comparison Test (Positive Series)

– Also a last resort, LCT is usually better.
• LCT (Positive Series)

– Series of the form powers of 𝑛
powers of 𝑛 .

– “Almost” geometric series.
– Don’t forget: 𝐿 = 0 or 𝐿 = 0 are more complicated!

• Ratio Test (Any Series)
– Factorials!
– “Almost” geometric series.
– 𝐿 = 1 gives no info.

• Root Test (Any Series)
– When all terms have a power of 𝑛.

All the above tests can only discuss absolute convergence or divergence.
• AST (Alternating Series)

– For proving conditional convergence.
EXERCISE 5.9.8: Series Practice
Determine whether the following series are absolutely convergent, conditionally convergent, or diver-
gent.
(i)

∞
∑
𝑛=1

52𝑛

𝑛! .

(ii)
∞

∑
𝑛=1

𝑛2 + 𝑛
𝑛3 − 3𝑛 + 1

(iii)
∞

∑
𝑛=1

𝑛3 + 7
𝑛3 + 𝑛2 .

(iv)
∞

∑
𝑛=1

[ln(𝑛)]3√𝑛 .

(v)
∞

∑
𝑛=1

( 𝑛√2 − 1)𝑛.
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(vi)
∞

∑
𝑛=1

(−1)𝑛(𝑛2 + 1)
𝑛3 + 3 .

Solutions to 5.9.8:
(i) Ratio Test (absolutely convergent)
(ii) LCT (diverges)
(iii) Divergence Test (diverges)
(iv) LCT or Comparison (diverges)
(v) Root Test (converges absolutely)
(vi) LCT and AST (converges conditionally)



Chapter 6

Power Series

6.1 Introduction to Power Series
DEFINITION 6.1.1: Power series
A power series is a series of the form

∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ (centre = 0)

or ∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑎) + 𝑎2(𝑥 − 𝑎)2 + ⋯ (centre=𝑎)

where 𝑎𝑖 ∈ R for all 𝑖.

DEFINITION 6.1.2: Domain
The domain of a power series is the collection of all 𝑥 ∈ R for which the power series converges.

REMARK 6.1.3
The domain is never empty! The series will always converge (to 𝑎0) at 𝑥 = centre.

Conventions: To simplify notation, we will use the following conventions in this section for
∞
∑
𝑛=0

𝑎𝑛(𝑥 −
𝑎)𝑛:
(I) When 𝑛 = 0, the term is 𝑎0 for all 𝑥, including 𝑥 = 𝑎 (so 00 = 1 here!)
(II) If the first few coefficients are zero; that is, 𝑎0 = 𝑎1 = ⋯ = 𝑎𝑘 = 0, then

∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 =
∞

∑
𝑛=𝑘+1

𝑎𝑛(𝑥 − 𝑎)𝑛

In other words, if a coefficient is zero, regardless of what power (𝑥 − 𝑎) has, that term is zero, and you
can discard it.

80
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EXAMPLE 6.1.4

Find the domain of
∞

∑
𝑛=0

𝑥𝑛

𝑛! .

Solution. Use the Ratio Test:

lim
𝑛→∞

∣𝑎𝑛+1
𝑎𝑛

∣ = lim
𝑛→∞

∣( 𝑥𝑛+1

(𝑛 + 1)!) ( 𝑛!
𝑥𝑛 )∣ = lim

𝑛→∞
∣ 𝑥
𝑛 + 1∣ = 0 < 1

for all 𝑥 ∈ R. So, the series converges for all 𝑥 ∈ R, which means the domain is R.

EXAMPLE 6.1.5

Find the domain of
∞

∑
𝑛=0

(𝑥 − 7)𝑛.

Solution. Ratio (or Root) Test:

lim
𝑛→∞

∣ (𝑥 − 7)𝑛+1

(𝑥 − 7)𝑛 ∣ = lim
𝑛→∞

|𝑥 − 7| = |𝑥 − 7|

To guarantee the series converges, we need |𝑥 − 7| < 1, or 6 < 𝑥 < 8. However, the Ratio Test fails if
|𝑥 − 7| = 1; that is, 𝑥 = 6 or 𝑥 = 8, so let’s check these separately!

• If 𝑥 = 6:
∞
∑
𝑛=0

(6 − 7)𝑛 =
∞
∑
𝑛=0

(−1)𝑛 diverges.

• If 𝑥 = 8:
∞
∑
𝑛=0

(8 − 7)𝑛 =
∞
∑
𝑛=0

1𝑛 diverges.
So, the domain in this case is (6, 8). In fact, the domain will always be an interval!

THEOREM 6.1.6

For a given power series
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛, there are three possibilities:
(1) The series converges only when 𝑥 = 𝑎.
(2) The series converges for all 𝑥 ∈ R.
(3) There exists 𝑅 ∈ R such that the series converges absolutely for |𝑥 − 𝑎| < 𝑅, diverges if |𝑥 − 𝑎| > 𝑅,

and may converge or diverge if |𝑥 − 𝑎| = 𝑅.

Proof of 6.1.6

For simplicity, let’s work with
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 (centre 0), we can shift everything to 𝑥 = 𝑎 if needed. We will

show that if the power series
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 converges at 𝑥 = 𝑥0 and |𝑥1| < |𝑥0|, then
∞
∑
𝑛=0

|𝑎𝑛𝑥𝑛
1 | converges

too.
Since

∞
∑
𝑛=0

𝑎𝑛𝑥𝑛
0 converges, lim

𝑛→∞
|𝑎𝑛𝑥𝑛

0 | = 0 by the Divergence Test. Therefore, |𝑎𝑛𝑥𝑛| < 1 eventually.
Next, we can see that

|𝑎𝑛𝑥𝑛
1 | = |𝑎𝑛𝑥𝑛

0 |∣𝑥
𝑛
1

𝑥𝑛
0

∣ ⩽ ∣𝑥
𝑛
1

𝑥𝑛
0

∣

eventually. But
∞

∑
𝑛=0

∣𝑥1
𝑥0

∣
𝑛
converges (geometric series |𝑟| = |𝑥1/𝑥0| < 1), so

∞
∑
𝑛=0

|𝑎𝑛𝑥𝑛
1 | converges.
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DEFINITION 6.1.7: Radius of convergence

The 𝑅 in the theorem is called radius of convergence of the power series. 6.1.6:
• Case (1) ⟹ 𝑅 = 0
• Case (2) ⟹ 𝑅 = ∞
• Case (3) ⟹ 𝑅 ∈ (0, ∞). In this case, the endpoints must be checked separately (without Ratio

Test).

DEFINITION 6.1.8: Interval of convergence

The interval of convergence is the interval on which the power series converges. So, the interval could
be:

• 𝐼 = {𝑎}; 𝑅 = 0
• 𝐼 = R; 𝑅 = ∞
• 𝐼 = (𝑎 − 𝑅, 𝑎 + 𝑅); 𝑅 ∈ (0, ∞)
• 𝐼 = [𝑎 − 𝑅, 𝑎 + 𝑅); 𝑅 ∈ (0, ∞)
• 𝐼 = (𝑎 − 𝑅, 𝑎 + 𝑅]; 𝑅 ∈ (0, ∞)
• 𝐼 = [𝑎 − 𝑅, 𝑎 + 𝑅]; 𝑅 ∈ (0, ∞)

REMARK 6.1.9
The series converges absolutely on 𝐼 except maybe at the endpoints.

To find the radius, use the Ratio Test! Note that the Ratio Test limit may not exist! See example 6 in section
6.1. For our assignments and exams it will though.

EXAMPLE 6.1.10
Find the radius and interval of convergence for the following power series.
(i)

∞
∑
𝑛=1

3𝑛(𝑥 + 4)𝑛
√𝑛 .

Solution. Ratio Test:

lim
𝑛→∞

∣(3𝑛+1(𝑥 + 4)𝑛+1
√𝑛 + 1 ) (

√𝑛
3𝑛(𝑥 + 4)𝑛 )∣ = lim

𝑛→∞

√𝑛√𝑛 + 1 (3|𝑥 + 4|) = 3|𝑥 + 4|

We need 3|𝑥 + 4| < 1, so |𝑥 + 4| < 1/3. So 𝑅 = 1/3.
The open interval (before checking endpoints) is:

(−4 − 1
3, −4 + 1

3) = (−13
3 , −11

3 )

Check Endpoints

𝑥 = −13
3 :

∞
∑
𝑛=1

3𝑛 (−13/3 + 4)𝑛
√𝑛 =

∞
∑
𝑛=1

3𝑛 (−1/3)𝑛
√𝑛 =

∞
∑
𝑛=1

(−1)𝑛
√𝑛 converges by AST.

𝑥 = −11
3 :

∞
∑
𝑛=1

3𝑛 (−11/3 + 4)𝑛
√𝑛 =

∞
∑
𝑛=1

3𝑛 (1/3)𝑛
√𝑛 =

∞
∑
𝑛=1

1√𝑛 diverges (𝑝-series, 𝑝 = 1/2 < 1).

So, the interval of convergence is [−13/3, −11/3).
(ii)

∞
∑
𝑛=0

𝑛!𝑥𝑛.

Solution. Ratio Test:

lim
𝑛→∞

∣ (𝑛 + 1)!𝑥𝑛+1

𝑛!𝑥𝑛 ∣ = lim
𝑛→∞

(𝑛 + 1)|𝑥| = {∞ if 𝑥 ≠ 0
0 if 𝑥 = 0

So the series diverges unless 𝑥 = 0 ⟹ 𝑅 = 0, 𝐼 = {0}.
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(iii)
∞

∑
𝑛=2

(−1)𝑛𝑥𝑛

4𝑛 ln(𝑛)
Solution. Ratio Test:

lim
𝑛→∞

∣( (−1)𝑛+1𝑥𝑛+1

4𝑛+1 ln(𝑛 + 1)) ( 4𝑛 ln(𝑛)
(−1)𝑛𝑥𝑛 )∣ = lim

𝑛→∞
ln(𝑛)

ln(𝑛 + 1) (1
4) |𝑥| = lim

𝑛→∞

1/𝑛
1/(𝑛 + 1)

(|𝑥|
4 ) = |𝑥|

4

Need |𝑥|/4 < 1 ⟹ |𝑥| < 4. So, 𝑅 = 4, open interval is (−4, 4).
Check Endpoints

𝑥 = −4:
∞

∑
𝑛=2

(−1)𝑛(−4)𝑛

4𝑛 ln(𝑛) =
∞

∑
𝑛=2

1
ln(𝑛) . Note that 1

ln(𝑛) ⩾ 1
𝑛 for 𝑛 ⩾ 2, so since

∞
∑
𝑛=2

1
𝑛 diverges

(Harmonic Series), so does
∞

∑
𝑛=2

1
ln(𝑛) diverges by comparison.

𝑥 = 4:
∞

∑
𝑛=2

(−1)𝑛4𝑛

4𝑛 ln(𝑛) =
∞

∑
𝑛=2

(−1)𝑛

ln(𝑛) converges by AST.

So, the interval of convergence is (−4, 4].

6.2 Representing Functions as Power Series

A power series,
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 is a function whose domain is its interval of convergence.

We already know one function as a series: Geometric Series!

1
1 − 𝑥 =

∞
∑
𝑛=0

𝑥𝑛

for |𝑥| < 1. 𝑅 = 1 and 𝐼 = (−1, 1).
Let’s see what we can say about power series!

THEOREM 6.2.1: Abel’s Theorem

If 𝑓(𝑥) =
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 has interval of convergence 𝐼 , then 𝑓 is continuous on 𝐼 .

Proof of 6.2.1
Beyond the scope of this course.

While this is interesting, soon we will see that we can say a lot more!
We can also use known power series to get power series for other functions. Let’s examine the rules first.

Say 𝑓(𝑥) =
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 and 𝑔(𝑥) =
∞
∑
𝑛=0

𝑏𝑛(𝑥 − 𝑎)𝑛 with radii of convergence 𝑅𝑓 and 𝑅𝑔 and intervals of
convergence 𝐼𝑓 and 𝐼𝑔, respectively.

(I) 𝑓(𝑥) ± 𝑔(𝑥) =
∞
∑
𝑛=0

(𝑎𝑛 ± 𝑏𝑛)(𝑥 − 𝑎)𝑛. If 𝑅𝑓 ≠ 𝑅𝑔, then the radius of convergence is 𝑅 = min{𝑅𝑓 , 𝑅𝑔}
and the interval is 𝐼𝑓 ∩ 𝐼𝑔. If 𝑅𝑓 = 𝑅𝑔, then 𝑅 > 𝑅𝑓 .

(II) (𝑥−𝑎)𝑘𝑓(𝑥) =
∞
∑
𝑛=0

𝑎𝑛(𝑥−𝑎)𝑛+𝑘 where the radius is 𝑅𝑓 and the interval is 𝐼𝑓 ; that is, there is no change.
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(III) If 𝑐 ∈ R with 𝑐 ≠ 0, and 𝑎 = 0, then 𝑓(𝑐𝑥𝑘) =
∞
∑
𝑛=0

𝑎𝑛𝑐𝑛𝑥𝑛𝑘, where we get the radius, 𝑅, by solving

∣𝑐𝑥𝑘∣ < 𝑅𝑓 ⟹ |𝑥| < 𝑘√𝑅𝑓
|𝑐| , so the new radius is 𝑅 = 𝑘√𝑅𝑓

|𝑐| . If 𝑅𝑓 = ∞ then 𝑅 = ∞. The interval is

𝐼 = {𝑥 ∈ R ∣ 𝑐𝑥𝑘 ∈ 𝐼𝑓}.
Point is: we can substitute into a known series to form a new one.

EXAMPLE 6.2.2

Find a power series for 𝑓(𝑥) = 1
3 − 𝑥 about 𝑥 = 0.

Solution.
1

3 − 𝑥 = 1
3 ( 1

1 − 𝑥/3
) = 1

3
∞

∑
𝑛=0

(𝑥
3 )

𝑛
=

∞
∑
𝑛=0

𝑥𝑛

3𝑛+1

which is valid for |𝑥/3| < 1 ⟹ |𝑥| < 3 so 𝑅 = 3 and 𝐼 = (−3, 3).

REMARK 6.2.3
We don’t need to check endpoints for geometric series.

EXAMPLE 6.2.4

Find a power series for 𝑓(𝑥) = 𝑥2

𝑥 + 7 centred at 𝑥 = 0.
Solution.

𝑥2

𝑥 + 7 = 𝑥2

7 ( 1
1 + 𝑥/7

) = 𝑥2

7 [ 1
1 − (−𝑥/7)] = 𝑥2

7
∞

∑
𝑛=0

(−𝑥
7 )

𝑛
=

∞
∑
𝑛=0

(−1)𝑛𝑥𝑛+2

7𝑛+1

for |−𝑥/7| < 1 ⟹ |𝑥| < 7 so 𝑅 = 7 and 𝐼 = (−7, 7).

EXAMPLE 6.2.5

Find a power series for 𝑓(𝑥) = 1
4 − 𝑥2 about 𝑥 = 0.

Solution.
1

4 − 𝑥2 = 1
4 ( 1

1 − 𝑥2/4
) = 1

4
∞

∑
𝑛=0

(𝑥2

4 )
𝑛

=
∞

∑
𝑛=0

𝑥2𝑛

4𝑛+1

for |𝑥2/4| < 1 ⟹ |𝑥| < 2 so 𝑅 = 2 and 𝐼 = (−2, 2).

What about not centred at 𝑥 = 0?
EXAMPLE 6.2.6

Find a series representation for 𝑓(𝑥) = 1
𝑥 centred at 𝑥 = 3.

Solution. The trick is to add and subtract 3.

1
𝑥 = 1

(𝑥 − 3) + 3 = 1
3 [ 1

1 + ( 𝑥−3
3 )] = 1

3 [ 1
1 − (− (𝑥−3)

3 )
] = 1

3
∞

∑
𝑛=0

[−(𝑥 − 3)
3 ]

𝑛
=

∞
∑
𝑛=0

(−1)𝑛(𝑥 − 3)𝑛

3𝑛+1

for ∣− (𝑥−3)
3 ∣ < 1 ⟹ |𝑥 − 3| < 3 so 𝑅 = 3 and 𝐼 = (0, 6).
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6.3 Differentiation and Integration

Given a power series
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛, we can differentiate or integrate term-by-term:

THEOREM 6.3.1

If 𝑓(𝑥) =
∞
∑
𝑛=0

𝑐𝑛(𝑥 − 𝑎)𝑛 with radius of convergence 𝑅 > 0, then 𝑓(𝑥) is differentiable (hence continuous
and integrable) on (𝑎 − 𝑅, 𝑎 + 𝑅), and:
(1) 𝑓 ′(𝑥) =

∞
∑
𝑛=1

𝑛𝑎𝑛(𝑥 − 𝑎)𝑛−1

(2) ∫ 𝑓(𝑥) 𝑑𝑥 =
∞

∑
𝑛=0

[𝑎𝑛(𝑥 − 𝑎)𝑛+1

𝑛 + 1 ] + 𝐶

Both have radius of convergence 𝑅.

REMARK 6.3.2
In (1) always want to change the starting index since if 𝑛 = 0, the term is 0.

REMARK 6.3.3
While the radius doesn’t change, the interval may change! We need to check the endpoints if we
integrate/differentiate.

Proof of 6.3.1
Beyond the scope of this course.

EXAMPLE 6.3.4
Find a power series for ln|1 + 𝑥| about 𝑥 = 0.
Solution. We know 1

1 − 𝑥 =
∞
∑
𝑛=0

𝑥𝑛 for |𝑥| < 1, so 𝑅 = 1. Then, we get 1
1 + 𝑥 = 1

1 − (−𝑥) =
∞

∑
𝑛=0

(−𝑥)𝑛 =
∞

∑
𝑛=0

(−1)𝑛𝑥𝑛. Integrate:

ln|1 + 𝑥| =
∞

∑
𝑛=0

[(−1)𝑛𝑥𝑛+1

𝑛 + 1 ] + 𝐶

First, we can find 𝐶 by subbing into 𝑥 = 0 (the centre) (since we want a series for ln|1 + 𝑥| explicitly,
not the indefinite integral)

ln|1 + 0| =
∞

∑
𝑛=0

(−1)𝑛0𝑛+1

𝑛 + 1 + 𝐶 ⟹ 0 = 𝐶

So, ln|1 + 𝑥| =
∞

∑
𝑛=0

(−1)𝑛𝑥𝑛+1

𝑛 + 1 , 𝑅 = 1. What about the interval of convergence? The open interval is

(−1, 1), but since we integrated we need to check the endpoints.
Check Endpoints

At 𝑥 = 1:
∞

∑
𝑛=0

(−1)𝑛(1)𝑛+1

𝑛 + 1 =
∞

∑
𝑛=0

(−1)𝑛

𝑛 + 1 converges by AST.
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Note that this shows

ln(2) =
∞

∑
𝑛=0

(−1)𝑛

𝑛 + 1 =
∞

∑
𝑛=1

(−1)𝑛−1

𝑛

At 𝑥 = −1:
∞

∑
𝑛=0

(−1)𝑛(−1)𝑛+1

𝑛 + 1 =
∞

∑
𝑛=0

− 1
𝑛 + 1 diverges (Harmonic Series). So 𝐼 = (−1, 1].

EXAMPLE 6.3.5

Find a power series for 𝑓(𝑥) = 1
(1 − 𝑥)3 about 𝑥 = 0.

Solution. We know 1
1 − 𝑥 =

∞
∑
𝑛=0

𝑥𝑛 for |𝑥| < 1 (𝑅 = 1).

So differentiate: 1
(1 − 𝑥)2 =

∞
∑
𝑛=1

𝑛𝑥𝑛−1 (𝑅 = 1).

Do it again: 2
(1 − 𝑥)3 =

∞
∑
𝑛=2

𝑛(𝑛 − 1)𝑥𝑛−2 (𝑅 = 1).

Then we get 1
(1 − 𝑥)3 = 1

2
∞

∑
𝑛=2

𝑛(𝑛 − 1)𝑥𝑛−2 with 𝑅 = 1.

Check Endpoints

At 𝑥 = 1: 1
2

∞
∑
𝑛=0

𝑛(𝑛 − 1) diverges by the Divergence Test.

At 𝑥 = −1: 1
2

∞
∑
𝑛=0

𝑛(𝑛 − 1)(−1)𝑛−2 diverges by the Divergence Test.

So, 𝐼 = (−1, 1).

EXAMPLE 6.3.6
Find a power series for 𝑓(𝑥) = arctan(𝑥) about 𝑥 = 0.
Solution. We will first find a series for 1

1 + 𝑥2 , then integrate!

1
1 + 𝑥2 = 1

1 − (−𝑥2) =
∞

∑
𝑛=0

(−𝑥2)𝑛 =
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛

for |−𝑥2| < 1 ⟹ |𝑥| < 1 (𝑅 = 1).
So arctan(𝑥) = ∫ 1

1 + 𝑥2 𝑑𝑥 =
∞

∑
𝑛=0

[(−1)𝑛𝑥2𝑛+1

2𝑛 + 1 ] + 𝐶.

Sub in 𝑥 = 0 to get 𝐶: arctan(0) = 0 + 𝐶 ⟹ 𝐶 = 0.
So arctan(𝑥) =

∞
∑
𝑛=0

(−1)𝑛𝑥2𝑛+1

2𝑛 + 1 , 𝑅 = 1.

Check Endpoints

At 𝑥 = −1:
∞

∑
𝑛=0

(−1)𝑛(−1)2𝑛+1

2𝑛 + 1 =
∞

∑
𝑛=0

(−1)𝑛+1

2𝑛 + 1 converges by AST.

At 𝑥 = 1:
∞

∑
𝑛=0

(−1)𝑛

2𝑛 + 1 converges by AST.

So 𝐼 = [−1, 1].
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EXAMPLE 6.3.7

Evaluate ∫ 1
2 − 𝑥5 𝑑𝑥 as a power series about 𝑥 = 0.

Solution. First, find a series for 1
2 − 𝑥5 :

1
2 − 𝑥5 = 1

2 ( 1
1 − 𝑥5/2

) = 1
2

∞
∑
𝑛=0

(𝑥5

2 )
𝑛

=
∞

∑
𝑛=0

𝑥5𝑛

2𝑛+1

for |𝑥5/2| < 1 ⟹ |𝑥| < 21/5 (𝑅 = 21/5).
Then integrate:

∫ 1
2 − 𝑥5 𝑑𝑥 = ∫

∞
∑
𝑛=0

𝑥5𝑛

2𝑛+1 𝑑𝑥 =
∞

∑
𝑛=0

[ 𝑥5𝑛+1

2𝑛+1(5𝑛 + 1)] + 𝐶

with 𝑅 = 21/5. We won’t find 𝐶 since we are evaluating an indefinite integral! The open interval is
(−21/5, 21/5).
Check Endpoints

At 𝑥 = 21/5:
∞

∑
𝑛=0

(21/5)5𝑛+1

2𝑛+1(5𝑛 + 1) =
∞

∑
𝑛=0

2𝑛21/5

2𝑛+1(5𝑛 + 1) =
∞

∑
𝑛=0

[(21/5

2 ) ( 1
5𝑛 + 1)] diverges, use LCT with

∞
∑
𝑛=1

1
𝑛 (exercise).

At 𝑥 = −21/5:
∞

∑
𝑛=0

[(−1)5𝑛+1 (21/5

2 ) ( 1
5𝑛 + 1)] converges by AST.

So 𝐼 = [−21/5, 21/5).

Using differentiation, we can find another series for 𝑒𝑥.
PROPOSITION 6.3.8

𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛

𝑛! for all 𝑥 ∈ R.

Proof of 6.3.8

We know 𝑅 = ∞ for that series. Let 𝑔(𝑥) =
∞

∑
𝑛=0

𝑥𝑛

𝑛! . Then,

𝑔′(𝑥) =
∞

∑
𝑛=1

𝑛𝑥𝑛−1

𝑛! =
∞

∑
𝑛=1

𝑥𝑛−1

(𝑛 − 1)! =
∞

∑
𝑛=0

𝑥𝑛

𝑛! = 𝑔(𝑥)

So 𝑔′(𝑥) = 𝑔(𝑥).
Solve this ODE, and we get 𝑔(𝑥) = 𝐶𝑒𝑥, but by definition 𝑔(0) = 1, so 𝐶 = 1 and therefore 𝑔(𝑥) = 𝑒𝑥.

We will come back and explore this and other functions soon!
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6.5 Review of Taylor Polynomials
DEFINITION 6.5.1: 𝑛-th degree Taylor polynomial

If 𝑓 is 𝑛-times differentiable at 𝑥 = 𝑎, the nth degree Taylor polynomial for 𝑓 centred at 𝑥 = 𝑎 is

𝑇𝑛,𝑎(𝑥) =
𝑛

∑
𝑛=0

𝑓 (𝑘)(𝑎)
𝑘! (𝑥 − 𝑎)𝑘

DEFINITION 6.5.2: 𝑛-th degree Taylor remainder function

If 𝑓 is 𝑛-times differentiable at 𝑥 = 𝑎, we define the nth degree Taylor remainder function centred
at 𝑥 = 𝑎 to be:

𝑅𝑛,𝑎(𝑥) = 𝑓(𝑥) − 𝑇𝑛,𝑎(𝑥)

The error in using 𝑇𝑛,𝑎(𝑥) to approximate 𝑓(𝑥) is given by Error = |𝑅𝑛,𝑎(𝑥)|.
To estimate the size of the error we use:

THEOREM 6.5.3: Taylor’s Theorem

Assume 𝑓 is 𝑛 + 1-times differentiable on an interval 𝐼 containing 𝑥 = 𝑎. Let 𝑥 ∈ 𝐼 . Then, there exists a
point 𝑐 between 𝑥 and 𝑎 such that

𝑓(𝑥) − 𝑇𝑛,𝑎(𝑥) = 𝑅𝑛,𝑎(𝑥) = 𝑓 (𝑛+1)(𝑐)
(𝑛 + 1)! (𝑥 − 𝑎)𝑛+1

COROLLARY 6.5.4: Taylor’s Inequality

|𝑅𝑛,𝑎(𝑥)| ⩽ 𝑀|𝑥 − 𝑎|𝑛+1

(𝑛 + 1)!
where |𝑓 (𝑛+1)(𝑐)| ⩽ 𝑀 for all 𝑐 between 𝑥 and 𝑎.

6.7 Taylor Series and Convergence
Last week we examined how to obtain power series representations for certain functions, e.g., functions
related to 1

1 − 𝑥 , but is there a more general method? Let’s see!

Suppose 𝑓(𝑥) =
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑎) + 𝑎2(𝑥 − 𝑎)2 + ⋯ for |𝑥 − 𝑎| < 𝑅, 𝑅 > 0. What are the
𝑎𝑛’s?
First, at 𝑥 = 𝑎: 𝑓(𝑎) = 𝑎0. Next: differentiate!

𝑓 ′(𝑥) = 𝑎1 + 2𝑎2(𝑥 − 𝑎) + 3𝑎3(𝑥 − 𝑎)2 + ⋯

at 𝑥 = 𝑎: 𝑓 ′(𝑎) = 𝑎1. Keep going!

𝑓 ′′(𝑥) = 2𝑎2 + 6𝑎3(𝑥 − 𝑎) + ⋯ ⟹ 𝑓 ′′(𝑎) = 2𝑎2

Therefore 𝑎2 = 𝑓 ′′(𝑎)
2 .

Another iteration gives 𝑎3 = 𝑓 (3)(𝑎)
6 = 𝑓 (3)(𝑎)

3! , etc.
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In general: 𝑎𝑛 = 𝑓 (𝑛)(𝑎)
𝑛! .

Hey look! We just proved:
THEOREM 6.7.1

If 𝑓(𝑥) has a power series representation about 𝑥 = 𝑎, say 𝑓(𝑥) =
∞
∑
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 for |𝑥 − 𝑎| < 𝑅, 𝑅 > 0,
then

𝑎𝑛 = 𝑓 (𝑛)(𝑎)
𝑛!

That is,
𝑓(𝑥) =

∞
∑
𝑛=0

𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛

Called the Taylor series for 𝑓 centred at 𝑥 = 𝑎.

Special case: 𝑎 = 0:
∞

∑
𝑛=0

𝑓 (𝑛)(0)
𝑛! 𝑥𝑛 is called the Maclaurin series for 𝑓 .

REMARK 6.7.2
The theorem has some strengths and weaknesses:

• Strength: The theorem says that no matter how you find a series expansion for a function:
– Manipulating known series
– Integrating/differentiating
– Using the Taylor series formula

you will get the Taylor series for 𝑓 .
• Weakness: The theorem assumes 𝑓 has a power series expansion, and concludes it must be the

Taylor series. It doesn’t say that every function is equal to its Taylor series.

Indeed, some functions are not equal to their Taylor series. For example,

𝑓(𝑥) =
⎧{
⎨{⎩

1/𝑒 if 𝑥 < −1
𝑒𝑥 if − 1 ⩽ 𝑥 ⩽ 1
𝑒 if 𝑥 > 1

Let’s find 𝑓 ’s Maclaurin series! Clearly 𝑓 (𝑛)(0) = 1 for all 𝑛, so 𝑓 ’s Maclaurin series is
∞

∑
𝑛=0

𝑥𝑛

𝑛! , which we all know

converges on R. But we also know that 𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛

𝑛! for all 𝑥 ∈ R, but that means 𝑓(2) = 𝑒 ≠ 𝑒2 =
∞

∑
𝑛=0

2𝑛

𝑛! .

So, while both 𝑓 and the series exist everywhere, 𝑓(𝑥) ≠
∞

∑
𝑛=0

𝑥𝑛

𝑛! for all 𝑥 ∈ R.

This means we need to develop a way to determine if a function, 𝑓 , is equal to its Taylor Series on the interval
of convergence.
The first thing we need to notice is that the partial sums of a Taylor series are the Taylor polynomials!
So, what we want to determine is for which 𝑥 ∈ R is

𝑓(𝑥) = lim
𝑛→∞

𝑇𝑛,𝑎(𝑥)

Or, since we know 𝑓(𝑥) = 𝑇𝑛,𝑎(𝑥) + 𝑅𝑛,𝑎(𝑥), we need to check if
lim

𝑛→∞
𝑅𝑛,𝑎(𝑥) = 0
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For each 𝑥 where 𝑅𝑛,𝑎(𝑥) → 0, we can conclude that 𝑓(𝑥) is equal to its Taylor series.
In order to show that 𝑅𝑛,𝑎(𝑥) → 0, it would be great to have a way to approximate its size, and we do!

THEOREM 6.7.3: Taylor’s Inequality

If ∣𝑓 (𝑛+1)(𝑥)∣ ⩽ 𝑀 for |𝑥 − 𝑎| ⩽ 𝑑 ∈ R, then

|𝑅𝑛,𝑎(𝑥)| ⩽ 𝑀|𝑥 − 𝑎|𝑛+1

(𝑛 + 1)!

for |𝑥 − 𝑎| < 𝑑.

With this, we establish the convergence theorem!
THEOREM 6.7.4: Convergence Theorem for Taylor Series

Assume 𝑓 has derivatives of all orders on an interval 𝐼 containing 𝑥 = 𝑎.
Assume also that there exists 𝑀 ∈ R such that |𝑓 (𝑘)(𝑥)| ⩽ 𝑀 for all 𝑘 ∈ N and 𝑥 ∈ 𝐼 . Then,

𝑓(𝑥) =
∞

∑
𝑛=0

𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛

for 𝑥 ∈ 𝐼 .

Proof of 6.7.4

First, if 𝑥 = 𝑎 then
∞

∑
𝑛=0

𝑓 (𝑛)(𝑎)
𝑛! (𝑎 − 𝑎)𝑛 = 𝑓(𝑎), so we only need to prove it for 𝑥 ≠ 𝑎. Say 𝑥0 ∈ 𝐼 ,

𝑥0 ≠ 𝑎. Taylor’s Inequality says that since |𝑓 (𝑛+1)(𝑥)| ⩽ 𝑀 ,

0 ⩽ |𝑅𝑛,𝑎(𝑥0)| ⩽ 𝑀|𝑥0 − 𝑎|𝑛+1

(𝑛 + 1)!

Also, we have already shown that lim
𝑛→∞

𝑥𝑛

𝑛! = 0 for all 𝑥 ∈ R, so lim
𝑛→∞

𝑀|𝑥0 − 𝑎|𝑛+1

(𝑛 + 1)! = 0. Therefore, by
the Squeeze Theorem, lim

𝑛→∞
|𝑅𝑛,𝑎(𝑥0)| = 0, as desired.

COROLLARY 6.7.5

𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛

𝑛! for all 𝑥 ∈ R.

Proof of 6.7.5

Fix 𝐵 > 0, then for 𝑓(𝑥) = 𝑒𝑥, |𝑓 (𝑛+1)(𝑥)| = 𝑒𝑥 ⩽ 𝑒𝐵 for all 𝑥 ∈ [−𝐵, 𝐵]. Therefore, by the Convergence
Theorem, 𝑒𝑥 =

∞
∑
𝑛=0

𝑥𝑛

𝑛! for 𝑥 ∈ [−𝐵, 𝐵]. But 𝐵 was arbitrary, so
∞

∑
𝑛=0

𝑥𝑛

𝑛! for all 𝑥 ∈ R.

COROLLARY 6.7.6
Both sin(𝑥) and cos(𝑥) are equal to their Maclaurin series for all 𝑥 ∈ R.
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Proof of 6.7.6
Both functions are infinitely differentiable on R, and their derivatives (namely ± sin(𝑥) or ± cos(𝑥))
are bounded above by 1. So, by the Convergence Theorem, the result follows.

Now we know that sin(𝑥) and cos(𝑥) are equal to their Maclaurin series for all 𝑥 ∈ R, but we haven’t deter-
mined what they are!
Let’s start with the Maclaurin series for cos(𝑥).

• 𝑓(𝑥) = cos(𝑥) ⟹ 𝑓(0) = 1
• 𝑓 ′(𝑥) = − sin(𝑥) ⟹ 𝑓 ′(0) = 0
• 𝑓 ′′(𝑥) = − cos(𝑥) ⟹ 𝑓 ′′(0) = −1
• 𝑓 (3)(0) = sin(𝑥) ⟹ 𝑓 (3)(0) = 0
• 𝑓 (4)(0) = cos(𝑥) ⟹ 𝑓 (4)(0) = 1

this repeats.
So, the series is

1 − 𝑥2

2! + 𝑥4

4! − 𝑥6

6! + ⋯ =
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛

(2𝑛)!
So, for all 𝑥 ∈ R,

cos(𝑥) =
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛

(2𝑛)!
What about sin(𝑥)? We could use the formula, or integrate the series for cos(𝑥).

sin(𝑥) = ∫ cos(𝑥) 𝑑𝑥 = ∫
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛

(2𝑛)! 𝑑𝑥 =
∞

∑
𝑛=0

[ (−1)𝑛𝑥2𝑛+1

(2𝑛)!(2𝑛 + 1)] + 𝐶

But sin(0) = 0 ⟹ 0 = 0 + 𝐶 ⟹ 𝐶 = 0. So, for all 𝑥 ∈ R,

sin(𝑥) =
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

The point is: we can use whatever methods we want to find a Taylor/Maclaurin series, we don’t always need
to use the formula!

EXAMPLE 6.7.7
Find the Taylor series for 𝑒𝑥 centred at 𝑥 = 3.
Solution. We want powers of (𝑥 − 3), and we know 𝑒𝑥 =

∞
∑
𝑛=0

𝑥𝑛

𝑛! . So,

𝑒𝑥 = 𝑒𝑥−3+3 = 𝑒3𝑒𝑥−3 = 𝑒3
∞

∑
𝑛=0

(𝑥 − 3)𝑛

𝑛! =
∞

∑
𝑛=0

𝑒3

𝑛! (𝑥 − 3)𝑛

EXAMPLE 6.7.8
Find the Maclaurin Series for 𝑓(𝑥) = 𝑥2 sin(𝑥).
Solution.

𝑥2 sin(𝑥) = 𝑥2
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)! =
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛+3

(2𝑛 + 1)!
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for all 𝑥 ∈ R with 𝑅 = ∞.

EXAMPLE 6.7.9

Find the Taylor series about 𝑥 = 𝜋
2 for 𝑓(𝑥) = sin(𝑥).

Solution.

sin(𝑥) = sin [(𝑥 − 𝜋
2 ) + 𝜋

2 ]

= sin(𝑥 − 𝜋
2 ) cos(𝜋

2 ) + cos(𝑥 − 𝜋
2 ) sin(𝜋

2 ) trig. identity

= cos(𝑥 − 𝜋
2 )

=
∞

∑
𝑛=0

(−1)𝑛 (𝑥 − 𝜋
2 )

2𝑛

(2𝑛)!

for all 𝑥 ∈ R with 𝑅 = ∞.

6.9 Binomial Series
Let’s fine one more series: Binomial series!
We know the Binomial Theorem for (1 + 𝑥)𝑘 where 𝑛 ∈ N:

(1 + 𝑥)𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘)𝑥𝑘

where (𝑛
𝑘) = 𝑛!

𝑘!(𝑛 − 𝑘)! .

The question is: can we extend this to (1 + 𝑥)𝑛 for any 𝑛 ∈ R? Yes! We can find its Maclaurin series!
• 𝑓(𝑥) = (1 + 𝑥)𝑛 ⟹ 𝑓(0) = 1
• 𝑓 ′(𝑥) = 𝑛(1 + 𝑥)𝑛−1 ⟹ 𝑓 ′(0) = 𝑛
• 𝑓 ′′(𝑛) = 𝑛(𝑛 − 1)(1 + 𝑥)𝑛−2 ⟹ 𝑓 ′′(0) = 𝑛(𝑛 − 1)
• ⋮
• 𝑓 (𝑘)(𝑥) = 𝑛(𝑛 − 1) ⋯ [𝑛 − (𝑘 − 1)] (1 + 𝑥)𝑛−𝑘 ⟹ 𝑓 (𝑘)(0) = 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)

So, we get
∞

∑
𝑘=0

𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)
𝑘! 𝑥𝑘

for the Maclaurin series.
First, let’s determine the radius of convergence, for 𝑛 ≠ 0, 1, 2, …: Ratio Test:

lim
𝑘→∞

∣(𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)(𝑛 − 𝑘)𝑥𝑘+1

(𝑘 + 1)! ) ( 𝑘!
𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)𝑥𝑘 )∣ = lim

𝑘→∞
∣𝑛 − 𝑘
𝑘 + 1 ∣|𝑥| = |𝑥|

Need |𝑥| < 1, so 𝑅 = 1, and the open interval is (−1, 1).
What about endpoint convergence? Here is the answer, but you won’t be expected to know this:
Interval of convergence:
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• [−1, 1] if 𝑛 > 0, 𝑛 ∉ N

• (−1, 1] if −1 < 𝑛 < 0
• (−1, −1) if 𝑛 ⩽ −1
• R if 𝑛 = 0, 1, 2, ⋯

Notation:
(𝑛

𝑘) = 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)
𝑘!

called the Binomial coefficients with 𝑘-terms in the numerator. Keep in mind that (𝑛
0) = 1.

The bigger question is: does (1 + 𝑥)𝑛 equal to its Maclaurin series on (−1, 1)? The answer is yes! Let’s prove
it. We could try to use the Convergence Theorem, but instead we will prove it directly!
First, we claim that

( 𝑛
𝑘 + 1)(𝑘 + 1) + (𝑛

𝑘)𝑘 = (𝑛
𝑘)𝑛

for 𝑘 ⩾ 1.
Proof:

( 𝑛
𝑘 + 1)(𝑘 + 1) + (𝑛

𝑘)𝑘 = 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)(𝑛 − 𝑘)
(𝑘 + 1)! (𝑘 + 1) + 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)

𝑘! (𝑘)

= 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)
𝑛! (𝑛 − 𝑘) + 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)

𝑘! (𝑘)

= (𝑛
𝑘)(𝑛 − 𝑘) + (𝑛

𝑘)𝑘

= (𝑛
𝑘)(𝑛 − 𝑘 + 𝑘)

= (𝑛
𝑘)𝑛

Next, let 𝑓(𝑥) =
∞
∑
𝑘=0

(𝑛
𝑘)𝑥𝑘. We claim that

𝑓 ′(𝑥) + 𝑥𝑓 ′(𝑥) = 𝑛𝑓(𝑥)

for all 𝑥 ∈ (−1, 1).
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Proof:

𝑓 ′(𝑥) + 𝑥𝑓 ′(𝑥) =
∞

∑
𝑘=1

(𝑛
𝑘)𝑘𝑥𝑘−1 +

∞
∑
𝑘=1

(𝑛
𝑘)𝑘𝑥𝑘

= (𝑛
1) +

∞
∑
𝑘=2

(𝑛
𝑘)𝑘𝑥𝑘−1 +

∞
∑
𝑘=1

(𝑛
𝑘)𝑘𝑥𝑘

= (𝑛
1) +

∞
∑
𝑘=1

( 𝑛
𝑘 + 1)(𝑘 + 1)𝑥𝑘 +

∞
∑
𝑘=1

(𝑛
𝑘)𝑘𝑥𝑘

= (𝑛
1) +

∞
∑
𝑘=1

[( 𝑛
𝑘 + 1)(𝑘 + 1) + (𝑛

𝑘)𝑘] 𝑥𝑛

= (𝑛
1) +

∞
∑
𝑘=1

(𝑛
𝑘)𝑛𝑥𝑘

= 𝑛 +
∞

∑
𝑘=1

(𝑛
𝑘)𝑛𝑥𝑘

= 𝑛 [1 +
∞

∑
𝑘=1

(𝑛
𝑘)𝑥𝑘]

= 𝑛
∞

∑
𝑘=0

(𝑛
𝑘)𝑥𝑘

= 𝑛𝑓(𝑥)

Finally, let 𝑔(𝑥) = 𝑓(𝑥)
(1 + 𝑥)𝑛 . Let’s show 𝑔′(𝑥) = 0 for 𝑥 ∈ (−1, 1):

𝑔′(𝑥) = 𝑓 ′(𝑥)(1 + 𝑥)𝑛 − 𝑓(𝑥)𝑛(1 + 𝑥)𝑛−1

(1 + 𝑥)2𝑛

= 𝑓 ′(𝑥)(1 + 𝑥)𝑛 − (1 + 𝑥)𝑓 ′(𝑥)(1 + 𝑥)𝑛−1

(1 + 𝑥)2𝑛 by previous claim

= 𝑓 ′(𝑥)(1 + 𝑥)𝑛 − 𝑓 ′(𝑥)(1 + 𝑥)𝑛

(1 + 𝑥)2𝑛

= 0

So, 𝑔′(𝑥) = 0 for all 𝑥 ∈ (−1, 1), which means 𝑔 is constant on (−1, 1).
Since 𝑓(0) = 1, we get 𝑔(0) = 1/1 = 1, so 𝑔(𝑥) = 1 for all 𝑥 ∈ (−1, 1). This implies 𝑓(𝑥) = (1 + 𝑥)𝑛 for
𝑥 ∈ (−1, 1). We have finally proven:

THEOREM 6.9.1: Generalized Binomial Theorem
Let 𝑛 ∈ R, then for all 𝑥 ∈ (−1, 1):

(1 + 𝑥)𝑛 =
∞

∑
𝑘=0

(𝑛
𝑘)𝑥𝑘

where
(𝑛

𝑘) = 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)
𝑘!

and (𝑛
0) = 1.
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EXAMPLE 6.9.2
Find the Maclaurin series for arcsin(𝑥).
Solution.
Step 1: Find the Maclaurin series for (1 + 𝑥)−1/2.

(1 + 𝑥)−1/2 =
∞

∑
𝑘=0

(−1/2) (−3/2) (−5/2) ⋯ (−1/2 − 𝑘 + 1)
𝑘! 𝑥𝑘 =

∞
∑
𝑘=0

(−1)𝑘(1)(3)(5) ⋯ (2𝑘 − 1)
2𝑘(𝑘!) 𝑥𝑘

for 𝑥 ∈ (−1, 1).
Step 2: Find the Maclaurin series for (1 − 𝑥2)−1/2.

(1 − 𝑥2)−1/2 = [1 + (−𝑥2)]−1/2 =
∞

∑
𝑘=0

(−1)𝑘(1)(3)(5) ⋯ (2𝑘 − 1)
2𝑘(𝑘!) (−𝑥2)𝑘 =

∞
∑
𝑘=0

(1)(3)(5) ⋯ (2𝑘 − 1)
2𝑘 𝑥2𝑘

for |−𝑥2| < 1 ⟹ |𝑥| < 1 with 𝑥 ∈ (−1, 1).
Step 3: Integrate!

arcsin(𝑥) =
∞

∑
𝑘=0

(1)(3)(5) ⋯ (2𝑘 − 1)𝑥2𝑘+1

2𝑘(𝑘!)(2𝑘 + 1)
for 𝑥 ∈ (−1, 1) with 𝐶 = 0 since arcsin(0) = 0.

6.10 Additional Examples and Applications of Taylor Series
The applications we will examine are:
(I) Finding sums
(II) Evaluating limits
(III) Evaluating and approximating integrals
Recap of Known Series:

• 1
1 − 𝑥 =

∞
∑
𝑛=0

𝑥𝑛 (𝑅 = 0)

• 𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛

𝑛! (𝑅 = ∞)

• sin(𝑥) =
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)! (𝑅 = ∞)

• cos(𝑥) =
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛

(2𝑛)! (𝑅 = ∞)

• (1 + 𝑥)𝑛 =
∞

∑
𝑘=0

(𝑛
𝑘)𝑥𝑘 =

∞
∑
𝑘=0

𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)
𝑘! 𝑥𝑘 (𝑅 = 1) (𝑅 = ∞)

Finding Sums
Given a series, we may be able to manipulate it into one of the above series and find the sum that way.
Alternatively, we could manipulate a known series into the given series!
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EXAMPLE 6.10.1

(i) Find the sum of
∞

∑
𝑛=0

(𝑛 + 1
𝑛! ) 𝑥𝑛 = 𝑆(𝑥).

Solution. This is almost 𝑒𝑥, but it has an extra “𝑛 + 1” Let’s integrate!

∫ 𝑆(𝑥) 𝑑𝑥 =
∞

∑
𝑛=0

(𝑥𝑛+1

𝑛! ) + 𝐶 = 𝑥
∞

∑
𝑛=0

𝑥𝑛

𝑛! + 𝐶 = 𝑥𝑒𝑥 + 𝐶

So 𝑆(𝑥) = (𝑥 + 𝑒𝑥 + 𝐶)′ = 𝑒𝑥 + 𝑥𝑒𝑥.
(ii)

∞
∑
𝑛=0

[(−1)𝑛𝑥2𝑛+1

2𝑛 + 1 ] + 4 = 𝑆2(𝑥).

Solution. Differentiate:

𝑆′
2(𝑥) =

∞
∑
𝑛=0

(−1)𝑛𝑥2𝑛 =
∞

∑
𝑛=0

(−𝑥2)𝑛 = 1
1 + 𝑥2

so 𝑆2(𝑥) = ∫ 1
1 + 𝑥2 𝑑𝑥 = arctan(𝑥) + 𝐶. But 𝑆2(0) = 4, so 𝐶 = 4. Thus, 𝑆2(𝑥) = arctan(𝑥) + 4.

(iii)
∞

∑
𝑛=0

(−1)𝑛𝜋2𝑛

22𝑛(2𝑛)! = 𝑆3(𝑥)

Solution.
𝑆3(𝑥) =

∞
∑
𝑛=0

(−1)𝑛 (𝜋/2)2𝑛

(2𝑛)! = cos(𝜋
2 ) = 0

(iv) Starting with 1
1 − 𝑥 =

∞
∑
𝑛=0

𝑥𝑛, find
∞

∑
𝑛=1

𝑛𝑥𝑛

7 .

Solution.

( 1
1 − 𝑥)

′
= 1

(1 − 𝑥)2 =
∞

∑
𝑛=1

𝑛𝑥𝑛−1

⟹ 𝑥
(1 − 𝑥)2 =

∞
∑
𝑛=1

𝑛𝑥𝑛

⟹ 𝑥
7(1 − 𝑥)2 =

∞
∑
𝑛=1

𝑛𝑥𝑛

7

(v) 𝑆5(𝑥) =
∞

∑
𝑛=0

𝑒(𝑒 − 1) ⋯ (𝑒 − 𝑛 + 1)
3𝑛(𝑛!)

Solution.
𝑆5(𝑥) =

∞
∑
𝑛=0

𝑒(𝑒 − 1) ⋯ (𝑒 − 𝑛 + 1)
𝑛! (1

3)
𝑛

= (1 + 1
3)

𝑒
= (4

3)
𝑒

Evaluating Limits
We can use Taylor series to evaluate limits, instead of L’Hopital’s Rule. This idea is similar to how we used
Taylor polynomials and Taylor’s Approximation Theorem I to evaluate limits in MATH 137.

EXAMPLE 6.10.2
Evaluate with series and not L’Hopital’s Rule.
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(i) lim
𝑥→0

𝑒𝑥 − 1
𝑥 .

Solution.

lim
𝑥→0

𝑒𝑥 − 1
𝑥 = lim

𝑥→0
(1 + 𝑥 + 𝑥2/2! + ⋯) − 1

𝑥
= lim

𝑥→0
𝑥 + 𝑥2/2! + ⋯

𝑥
= lim

𝑥→0
[1 + 𝑥/2! + ⋯]

= 1

(ii) lim
𝑥→0

1 − cos(𝑥)
𝑥2 .

Solution.

lim
𝑥→0

1 − cos(𝑥)
𝑥2 = lim

𝑥→0
1 − (1 − 𝑥2/2! + 𝑥4/4! − ⋯)

𝑥2

= lim
𝑥→0

𝑥2/2! + 𝑥4/4!
𝑥2

+ lim
𝑥→0

[1/2! − 𝑥2/4! + ⋯]

= 1
2

(iii) lim
𝑥→0

𝑒𝑥 − 𝑥2/2 − 𝑥 − 1
sin(𝑥) − 𝑥 .

Solution.

lim
𝑥→0

𝑒𝑥 − 𝑥2/2 − 𝑥 − 1
sin(𝑥) − 𝑥 = lim

𝑥→0
(1 + 𝑥 + 𝑥2/2! + 𝑥3/3! + ⋯) − 𝑥2/2 − 𝑥 − 1

(𝑥 − 𝑥3/3! + 𝑥5/5! − ⋯) − 𝑥

= lim
𝑥→0

𝑥3/3! + 𝑥4/4! + ⋯
−𝑥3/3! + 𝑥5/5! − ⋯

= lim
𝑥→0

1/3! + 𝑥/4! + ⋯
−1/3! + 𝑥2/5! − ⋯

=
1/3!

−1/3!
= −1

Evaluating Integrals as Series
EXAMPLE 6.10.3

Evaluate ∫ 𝑒−𝑥2 𝑑𝑥 as a series.
Solution.

∫ 𝑒−𝑥2 𝑑𝑥 = ∫
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛

𝑛! 𝑑𝑥 =
∞

∑
𝑛=0

[(−1)𝑛𝑥2𝑛+1

𝑛!(2𝑛 + 1) ] + 𝐶

EXAMPLE 6.10.4

How many terms would we need to use to approximate ∫
1

0
𝑒−𝑥2 𝑑𝑥 to an accuracy of 1

10!(21)?



CHAPTER 6. POWER SERIES 98

Solution.
∫

1

0
𝑒−𝑥2 𝑑𝑥 =

∞
∑
𝑛=0

[(−1)𝑛𝑥2𝑛+1

𝑛!(2𝑛 + 1) ]
1

0
=

∞
∑
𝑛=0

(−1)𝑛

𝑛!(2𝑛 + 1)
This converges by AST! Let’s use AST estimation. First, write out some terms:

1 − 1
1!(3) + 1

2!(5) − 1
3!(7) + 1

4!(9) − 1
5!(11) + 1

6!(13) − 1
7!(15) + 1

8!(17) − 1
9!(19) + 1

10!(21)
error

So, the estimate needs at least 10 terms.

Recap of Power Series
Strategy for Solving Questions:

• Given a series, to find radius and interval of convergence:
– Ratio test for 𝑅 and open interval
– Check endpoints with other tests

• Given a series, to find its sum:
– Relate it to a known Series
– May need to integrate/differentiate

• Given a function, to get its Taylor/Maclaurin series, we can:

– Use the Taylor series formula
∞

∑
𝑛=0

𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛 where 𝑅 and 𝐼 need to be found from scratch in

this case.
– Manipulate/Integrate/Differentiate a known series. 𝑅 will be known, but endpoints need to be

checked to find 𝐼 .
– If asked for a Taylor series about 𝑥 = 𝑎, try 𝑓(𝑥) = 𝑓(𝑥 − 𝑎 + 𝑎), manipulate, and use a known

series.
• Stuff we can do with Taylor series:

(I) Find sums
(II) Evaluate limits
(III) Evaluate and approximate integrals
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